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may facilitate development of chemical probes for potential 
therapeutic interventions. 
	 TDP-43, a 43 kDa protein, was initially identified in 1995 
as a suppressor of HIV-1 gene expression (3). Physiologically, 
TDP-43 is a pivotal DNA/RNA binding protein involved 
in multiple cellular processes. Its structure comprises an 
N-terminal domain and two tandem ribonucleic acid (RNA) 
recognition motifs (RRMs), RRM1 and RRM2, followed by 
a C-terminal prion-like domain (4). Of note, TDP-43 binds 
to nucleic acids via its RRM domains, contributing to RNA 
processing, including splicing, translation, and the formation 
of cytoplasmic stress granules that improve messenger RNA 
stability to minimize stress-related damage (5). 
	 While the C-terminal prion-like domain has been 
extensively studied due to its prion-like activities in TDP-
43 cytoplasmic aggregation, the RRM domains, which are 
abundantly found in eukaryotes, also bear responsibility 
for cytosolic aggregate formation and disease phenotypes 
‎ 8. Notably, Shodai, et al. demonstrated that RRM1 readily 
acquires amyloidogenicity, which is the tendency to produce 
amyloid deposits, under physical stresses and contributes 
to pathogenic conversion of TDP-43 in ALS (9). Moreover, 
RRM1 drives the localization of TDP-43 to stress granules, 
whose excessive formation further facilitates cytoplasmic 
aggregation of TDP-43 in motor neurons (10). Both simulation 
and experimental studies have indicated that RRM1 exhibits 
structural and conformational instabilities, rendering it more 
susceptible to the formation of fibrils and aggregation (11). 
These findings highlight the significance of RRM1 in the 
formation of TDP-43 aggregates and suggest that targeting 
the RRM1 domain with small molecules holds promise in 
counteracting TDP-43 toxicity; however, current studies in 
this area are limited. 
	 In our previous study, we discovered that ATP could 
not only increase the thermodynamic stability of TDP43 
RRM1, but also suppressed the formation of amyloid-like 
aggregation (22). However, considering the multifunctional 
and degradation-prone nature of ATP in vivo, it is unsuitable 
for direct therapeutic application due to interference with 
other pathways. Therefore, the identification and design 
of ATP alternatives represents an essential initial step in 
the development of therapeutic drugs for TDP-43-related 
neurodegeneration disorders. 
	 Thus, this study investigated small molecules with the 
potential to target the ATP-binding site on TDP-43 RRM1 to 
mitigate TDP-43 toxicity. Tyrosine kinase inhibitors (TKIs) 
typically have ATP-like structural features, often with a binding 
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SUMMARY
TAR DNA binding protein-43 (TDP-43) aggregation 
is a hallmark for many neurodegenerative 
diseases including amyotrophic lateral sclerosis, 
frontotemporal dementia and Huntington’s disease. 
These protein aggregates can disrupt neuronal 
function and contribute to neurodegeneration. 
Previous studies have uncovered that adenosine 
triphosphate (ATP) is a promising molecule to dock 
onto the TDP-43 RNA recognition motif (RRM) region 
to reduce amyloid-like aggregation. This provides a 
potential therapeutic strategy in which chemicals with 
similar binding properties could be selected as drugs. 
Under normal physiological conditions, TDP-43 RRM 
region mediates the binding of nucleic acid with TDP-
43. Therefore, we hypothesized that molecules such 
as tyrosine kinase inhibitors (TKIs), which can bind 
to ATP-binding sites or competitively bind to other 
nucleic acid binding regions, including different 
variants of RRM domains, are of great screening 
interest. We conducted in silico simulations using 
molecular dynamic simulation and virtual screening, 
in which the ATP-binding pocket is introduced in 
docking model. Our results supported our hypothesis 
because five of ten selected binding chemicals 
were TKIs. From the result, we then selected the 
two molecules under maximum concentration 
in bloodstream by conducting further screening 
strategies such as long-term molecular dynamic 
simulation, and Lipinski’s rules testing.

INTRODUCTION
	 Pathogenic deposits comprising TAR DNA-binding protein 
(TDP-43) are a distinguishing feature found in brain and spinal 
cord of individuals affected by a diverse neurodegenerative 
disease. These deposits have been acknowledged as the 
principal pathogenic determinant contributing to the etiology 
of these disorders, leading to their categorization as “TDP-43 
proteinopathies” (1). Notably, cytosolic aggregation of TDP-43 
is evident in up to 97% of patients with sporadic amyotrophic 
lateral sclerosis (ALS) and approximately 45% of patients 
with frontotemporal lobar degeneration (2). Consequently, 
research on TDP-43 offers an opportunity to gain insights 
into the progression of neurodegenerative diseases and 
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mode similar to ATP, and can interact with the ATP binding 
pocket in the kinase binding site. Thus, we hypothesized 
that TKIs, which can alternatively bind to ATP-binding sites 
or competitively bind to other nucleic acid binding regions 
including different variants of the RRM domain, would be 
of great screening interest. Toward this end, we identified 
small molecules that interact favorably with the ATP-binding 
pocket in silico. A library of 2500 compounds was selected 
for docking onto the target site. Subsequently, the top five hits 
obtained from docking were subjected to further molecular 
dynamic simulation studies, leading to the identification of two 
compounds, indacaterol 8-O-glucuronide and lumacafftor, 
that possessed favorable binding properties. These results 
suggest their potential as ATP alternatives capable of 
antagonizing TDP43 proteinopathy. Our study serves as 
a compelling example of implementing a computational 
approach to discover small molecules that specifically target 
TDP-43 RRM1. 

RESULTS
Identification of candidates binding to the TDP-43 RRM1-
ATP interface
	 We docked 2500 compounds from DrugBank against 
the target TDP-43 RRM1 using AutoDockTools software. 
We then performed free energy calculations using gmx_
MMPBSA package to rank their binding affinity. The top ten 
molecules with the highest binding energy to the TDP-43 
RRM1-ATP interface were identified (Table 1). A detailed 

examination revealed that ATP specifically binds to RRM1, 
partially overlapping with the nucleic acid-binding site, but 
penetrating deeper into the cavity due to its small size (22). 
The docking analysis revealed that the docked compounds 
displayed a great overlap with the ATP-binding surface of the 
TDP-43 RRM1, mimicking the interactions between RRM1 
and ATP and occupying the positively charged cavity (Figure 
1). 
	 These ten molecules exhibited binding energies ranging 
from -6.643 to -7.996 kcal/mol, lower than that of ATP (-4.976 
kcal/mol) (Table 1). Of the identified candidates, half were 
TKIs, including nilotinib, ponatinib, midostaurin, capmatinib, 
and imatinib, thus supporting our hypothesis. The druggability 
of molecules refers to the suitability of a compound or molecular 
target for development into a therapeutic drug, this was largely 
determined by their physicochemical properties. Criteria 
such as “Lipinski’s rule of five” (Ro5) were applied to quantify 
drug-like properties in silico to assess the pharmacokinetics 
and bioavailability profiles of the compounds (12). The Ro5 
includes: a molecule with a molecular mass less than 500 
Da (larger molecules may have difficulty crossing cellular 
membranes, limiting their absorption and distribution within 
the body), no more than 5 hydrogen bond donors, no more 
than 10 hydrogen bond acceptors (hydrogen bond donors can 
form interactions with water molecules, potentially reducing 
a compound's ability to permeate lipid membranes), an 
octanol–water partition coefficient log P not greater than five 
(excessive lipophilicity may lead to poor aqueous solubility, 
and absorption, while over hydrophilicity may struggle to 
penetrate lipid barriers). A variation of the Ro5 proposed by 
Veber, 10 or fewer rotatable bonds, was also used to test 
metabolic stability and permeability of drugs.
	 Among the ten compounds, lumacafftor, capmatinib, 

Figure 1: Electrostatic surface potentials of TDP-43 RRM1 in 
complex with various compounds. TDP-43 RRM1 is shown in 
electrostatic surface potential, as the color legend indicates, the 
red color (negative potential) represents negatively charged surface 
and the blue color (positive potential) occurs when the surface is 
positively charged. The corresponding ligand is displayed in spheres 
(yellow). The ligands that exhibited additional binding sites in docking 
structures, lumacafftor and midostaurin, are represented as green 
spheres.

Figure 2: Molecular interactions between TDP-43 RRM1 and 
screened compounds. The diagram portrays TDP-43 RRM1 in 
cartoon, while ATP-perturbed residues are in sticks (cyan), and the 
ligands are in sticks (yellow or green). The inset provides detailed 
interactions between the protein and its corresponding compound.
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and imatinib fulfilled all four Ro5 rules, indicating their 
favorable pharmacokinetic properties. In contrast, nilotinib 
and azilsartan medoxomil violated two rules, primarily due to 
their high molecular weight (>500 g/mol) and octanol-water 
partition coefficient exceeding log P (Table 1). The remaining 
compounds violated only one rule, reflected in slightly higher 
molecular weights (500–600 g/mol). It should be noted that 
since all the selected compounds are FDA-approved and 
typically administered orally, strict adherence to Ro5 was not 
followed. 

Determinants of binding affinity: role of H-bonds, pi-
cation interactions, and binding sites
	 Among the top-ranked compounds, nilotinib demonstrated 
the highest affinity (-7.996 kcal/mol) towards RRM1. Detailed 
examination of the ligand-protein interactions was performed 
by PyMOL 2.5 showed that nilotinib forms two H-bonds with 
TDP-43 RRM1, which contribute to its high affinity, along with 
potential pi-cation interactions, and hydrophobic interactions. 
Ponatinib, the second-ranked compound, did not form any 
H-bonds but pi-cation interactions. Dihydroergocryptine and 
dihydroergocornine have similar hydrophobic interaction 
with TDP-43 RRM1. While dihydroergocryptine formed one 
more H-bonds with K145 and pi-cation interactions with 
K136, explaining its stronger binding affinity (-7.467 kcal/mol) 
compared to dihydroergocryptine (-7.223 kcal/mol) (Table 
2). Indacaterol 8-O-glucuronide formed one H-bond and pi-
cation interactions with K136, K145, and K181, resulting in a 
binding score of -7.161 kcal/mol (Figure 2). 

	 Azilsartan medoxomil, the third-to last compound in 
binding energy (-6.942 kcal/mol), did not form any H-bonds 
but formed three pi-cation interactions. Capmatinib, the 
second last molecule in binding energy formed pi-cation 
interactions with the aforementioned three residues and 
an additional H-bond with G146, similarly to azilsartan 
medoxomil. However, the greater distance between the ligand 
and the three residues led to a slightly lower affinity (-6.923 
kcal/mol). The molecule with least binding energy, imatinib, 
could not form any H-bonds and exhibited only two pi-cation 
interactions, thereby resulting the lowest binding affinity 
(-6.643 kcal/mol) (Table 2). 
	 Notably, lumacafftor and midostaurin, each of them 
exhibited two potential ways to bind to RRM1 (Figure 1). 
Lumacafftor formed H-bonds with G110, K145, and Q182 on 
RRM1 and pi-cation interactions with K136. In comparison, 
the other binding configuration established H-bonds with K145 
and Q184, suggesting that one of these two configurations may 
represent as a byproduct when one configuration is desired 
after the reaction, partially occupying the RRM1 and reducing 
the yield of main product. Unlike lumacafftor, midostaurin 
exhibited same pi-cation interactions in both binding sites. 
The residue composition of hydrophobic interaction clusters 
was similar in both states, making it difficult to determine the 
primary binding configuration. 
	 In summary, the formation of H-bonds and pi-cation 
interactions played crucial roles in determining the binding 
affinity, with particular emphasis on K145 of RRM1 forming 
H-bonds with many molecules including nilotinib, ponatinib, 

Table 1: Drug-like properties of top 10 compounds selected by in silico screening.
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dihydroergocryptine, and lumacafftor, which contributed to 
the superior docking affinities of these molecules to others. 

Binding affinities of compound-protein complexes 
revealed through MS simulations
	 To validate and quantify the stability of compound-protein 
complexes, we performed a preliminary 10-ns molecular 
dynamics (MD) simulation for all 10 complexes in silico 
(Figure 3). The binding free energy of individual compounds 
and ligand-protein complexes are shown in Table 1 and 
Table 2, respectively. With the exception of imatinib (-13.24 
kcal/mol), all compounds hold stronger binding capabilities in 
complex towards RRM1 compared to ATP (-13.24 kcal/mol), 
with values ranging from -33.82 to -15.85 kcal/mol (Table 2). 
This is consistent with the above in silico studies, in which 
imatinib showed lowest binding capacity due to the absence 
of H-bonds and only two pi-cation interactions with RRM1. 
To further elucidate the conformational stabilization of the 
top potential compounds, we performed a more extensive 
50-ns MD simulation for the top five selected compounds 
with the highest binding free energy, namely indacaterol 
8-O-glucuronide, lumacafftor, midostaurin, azilsartan, and 
ponatinib. The binding free energies were calculated and 
ranged from -41.32 to -17.41 kcal/mol, with midostaurin 
displaying the highest and ponatinib the lowest affinity 
against TDP-43 RRM1 (Table 3). The relatively high 
binding energy of ponatinib could be attributed to its limited 
electrostatic interactions and non-polar interactions with the 
protein. However, electrostatic interactions are important 
for binding affinity of both indacaterol 8-O-glucuronide and 
lumacafftor, which ranked the first and second among the 
five compounds, respectively. While the binding capabilities 
resulting from polar interactions were relatively weaker for 
indacaterol 8-O-glucuronide and lumacafftor. The ∆Gsol 
values of indacaterol 8-O-glucuronide and lumacaftor 

are relatively high with 143.12 kcal/mol and 105.86 kcal/
mol respectively. This indicates the presence of solvent 
molecules also negatively influenced the binding affinity with 
RRM1, further inducing weaker binding affinities of these two 
compounds. Moreover, azilsartan medoxomil, the second-
to-last compound in terms of binding energy, exhibited lower 
energy contributions from electrostatic interactions compared 
to ponatinib but higher than those of midostaurin, lumacafftor, 
and indacaterol 8-O-glucuronide.

Dynamic conformational changes of compound-protein 
complexes
	 To gain a dynamic perspective on conformational changes 
occurring during the 50-ns MD simulations, we computed 
the root-mean-square deviation (RMSD) and root-mean-
square fluctuation (RMSF) for each complex, and individual 
compound without RRM1 (Table 4). The RMSD reflects the 
overall coordinate deviations at each time point, and these 
values of the complexes, were in the range of 1.38 to 2.57 Å. 
To assess the flexibility of residues during the MD simulations, 
the RMSF of Cα-atoms was calculated for the five complexes 
to represent fluctuations of coordinates at residue level 
throughout the simulation. For both RMSD and RMSF values, 
high fluctuation may indicate instability or inconsistency in 
maintaining conformation, which is undesirable for durability 
and molecular docking.
	 Notably, both the midostaurin-RRM1 and lumacafftor-
RRM1 complexes had average RMSD values higher than that 
of the ATP complex (1.86 Å) (Table 4). Despite midostaurin 
exhibiting the lowest binding energy, midostaurin-RRM1 
had the highest RMSD, showing significant fluctuations 
after 12 ns compared to the unbound state. Lumacafftor-
RRM1, characterized by the second largest RMSD value of 
2.32 Å, induced noticeable fluctuations within the 20-30 ns 
timeframe. The distinct orientations adopted by lumacafftor, 
as observed in the docking results, may contribute to these 

Table 2: The binding free energies of the ligand-protein 
complexes in 10-ns MD simulations. ∆G values signify the average 
binding energies of the compound-TDP-43 RRM1 complexes, 
obtained from three independent 10-ns MD simulations. Control 
groups ATP-RRM1 and free RRM1 are excluded from the ranking 
for comparison. Conformers in which the ligand dissociated from the 
binding pocket were excluded from the analysis.

Table 3: The binding free energies of the ligand-protein 
complexes in 50-ns MD simulations. ∆Gbind values represents 
the binding free energies of the five-top compound-TDP-43 RRM1 
complexes, averaged from three independent 50-ns MD simulations. 
∆Gele: electrostatic free energy, ∆Gvdw: van der Waals free energy, 
∆Gpol: electrostatic polar components of the salvation free energy, 
∆Gnonpol: non-polar component of the salvation free energy, ∆Gsol: 
solvation energy.
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notable fluctuations. Lumacafftor itself had the highest RMSD 
value compared with other compounds. The RMSD values of 
RRM1 in the complex with indacaterol 8-O-glucuronide and 
ponatinib were comparable, with values of 1.41 and 1.38 Å, 
respectively. However, for compounds alone without RRM1, 
the RMSD value of indacaterol 8-O-glucuronide was lower 
than that of ponatinib, indicating larger fluctuations of the 
latter compound in the complex. The RMSD value of RRM1 
in complex with azilsartan medoxomil was slightly higher 
than those of the Indacaterol 8-O-glucuronide and ponatinib 
complexes, but lower than that those of the midostaurin 
and lumacafftor complexes. Throughout the simulations, 
the RMSD of RRM1 in the complex with indacaterol 
8-O-glucuronide and ponatinib remained relatively stable. 
	 The RMSF values for all complexes were below 1 Å, 
ranging from 0.68 to 0.84 Å. It should be noted that all 
compounds were able to stabilize the fluctuations of the 
C-terminal region. Although lumacafftor had a weaker 
stabilizing effect on the C-terminal region, it behaved almost 
the same as when it was unbound. Consistent with the RMSD 
analysis, the RMSF of RRM1 in complex with ponatinib and 
indacaterol 8-O-glucuronide showed comparable and the 
lowest values. In the case of indacaterol 8-O-glucuronide, it 
showed slightly weaker stability around K140, which is located 
in the large loop formed by β2 and β3. Further analysis of 
the secondary structure unraveled that midostaurin and 
azilsartan medoxomil induced structural changes over 
residues 179–182 transitioning from a turn-to-unstructured 
and turn-to-alpha helix, respectively. 

DISCUSSION
	 In prior literature, the selection of ligand binding sites 
has often been left open to any region within the entirety of 
the target molecule (18). The present model distinguishes 

itself by precisely designating the ATP-binding pocket as the 
focal point of interest. This strategic approach delimits the 
search scope for potential binding candidates and further 
defines the intended ligand function, which prevent TDP-43 
aggregation through coverage of the β-strands within the 
ATP-binding pocket. The outcome of this study underscores 
the effectiveness of this approach, with a noteworthy 
observation that approximately half of the identified 
molecules are classified as TKIs. This observation attests to 
the robustness of the model, suggesting promising avenues 
for the construction of future virtual screening models aimed 
at identifying alternative ligand drugs for established protein-
ligand complexes. The selected drugs indeed comprise a 
significant proportion of TKIs. They competitively binding to 
the ATP-binding site of tyrosine kinases (17). This binding 
action effectively curbs the aberrant behavior of mutated 
TKs, thereby hindering dysregulated signal cascades driven 
by ATP interactions. Given the high degree of conservation 
in ATP binding sites across various ATP-binding proteins and 
the overlapping binding cavities shared between kinases and 
TDP-43, coupled with the orientation of the virtual screening 
model toward the ATP-binding pocket, the emergence of 
TKIs as a substantial portion of the repurposed drug results 
is rational. This outcome can be attributed to the intrinsic 
alignment of the model's design and the functional attributes 
of TKIs. 
	 Through virtual screening and MD simulations, two desirable 
molecules, lumacafftor and indacaterol 8-O-glucuronide, 
were identified. Of note, lumacafftor shows inferior drug 
properties than indacaterol 8-O-glucuronide. This is mainly 
because lumacafftor has two distinct conformations to dock 
on TDP-43 RRM1; it is therefore predicted that this ligand 
could waver between two conformations, which may partially 
compromise its stability and MD in vivo, resulting in its inferior 
druggability compared to indacaterol 8-O-glucuronide. 
	 The colocalization and physical association among FUS, 
RBM45, and TDP-43 in ALS has been documented, implying 
that the RRM-binding agents elucidated in this study may 
possess therapeutic potential across a broader spectrum 
of neurodegenerative disorders (15,16). Although our study 
yields valuable insights, it is essential to accentuate the 
need for extended exploration. This entails not only in-depth 
preclinical and clinical investigations but also a meticulous 
examination of conformational dynamics, allosteric sites, 
and the application of a broader structural context for 
virtual screening experiments. Such endeavors are pivotal 
to advancing our understanding of potential therapeutic 
interventions and their translational implications.
	 To summarize, neurodegenerative diseases marked by 
TDP-43 proteinopathy necessitate targeted interventions. 
Employing a computational approach, we investigated small 
molecules binding to the ATP-binding site on TDP-43 RRM1. 
Utilizing in silico screening and subsequent simulations, two 
compounds, indacaterol 8-O-glucuronide and lumacafftor, 
hold significant promise as lead compounds, offering valuable 
structural insights into the design of anti-TDP-43 aggregation 
agents, and expediting the development of effective 
interventions for TDP-43-associated neurodegeneration. This 
work underscores the potential for computational methods in 
drug discovery and provides a foundation for developing anti-
TDP-43 aggregation agents for neurodegenerative disease 
intervention. 

Table 4: The topology and dynamics variations of the 
compound-protein complexes through 50-ns simulations. 
∆fCt denotes the average differences between the complexes and 
the apo state, calculated across residues 180-184. Rg and SASA 
are abbreviations of radius of gyration and solvent accessible 
surface area, respectively. The descriptors are utilized to assess 
the conformational changes, flexibility, compactness, and surface 
accessibility of compound-protein complexes.
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MATERIALS AND METHODS
Preparation of the compound library and protein 
structure
	 We sourced a library consisting of 2500 FDA-approved 
drugs from the DrugBank and Zinc databases, and then 
converted drugs into three-dimensional (3D) structures using 
the Open Babel package (version 2.3.1) (18,19). We retrieved 
the solution structure of TDP-43 RRM1 structure from the 
Protein Data Bank (ID 2CQG) as the template for our study, 
the topology of which is very similar to those in the complex 
with nucleic acids. We selected the ATP-binding pocket within 
the first conformer of this structure as the primary binding 
site of interest (Figure 3), which is composed of W113, K114, 
K136, K137, K145, K176, K179, and K181.

Structure-based in silico screening
	 To identify the potential candidates targeting the TDP-43 
RRM1, we employed a rigorous and systematic structure-
based in silico molecular docking approach. Control groups 
including apo RRM1, which is the inactive or unbound form of 
the protein RRM1, as well as RRM1 in complex with ATP were 
also included for comparison. We utilized he AutoDockTools 
software, an integral component of the MGLTools 1.5.7 
package, for optimizing and analyzing structures. The initial 
steps of the docking preparation involved adding missing 
atoms, assigning charges, and defining the region of interest 
within the protein for ligand binding. We them performed 
he molecular docking simulations using AutoDock Vina, a 
widely used protein-ligand program with predefined search 
space and docking parameters. Specifically, we docked 
the refined 3D structures of drugs sourced from DrugBank 
against TDP-43 RRM1.To ensure accurate sampling of the 
binding pocket, specific parameters for the 3D grid box were 
defined as follows: box size (Å) (x, y, z) = (14, 20, 16) and 
center coordinates (Å) (x, y, z) = (12, -7.5, 0.5). We set the 
exhaustiveness to 24, allowing for thorough exploration of 
the conformational space, while generating 10 conformers to 
capture diverse ligand binding orientations.
	 To validate the binding efficiencies, we conducted a 
redocking experiment. We re-docked the obtained binding 
configuration of the ligand onto the same active binding site 

of the protein to ensure the consistency and reliability of the 
docking results. All docking protocols remained unchanged, 
and the grid parameters were kept constant. We shortlisted the 
ligands with favorable binding energies for further molecular 
dynamic simulation studies. The detailed examination of 
ligand-protein interactions was performed by PyMOL 2.5.

Molecular dynamics simulation
	 We conducted a preliminary 10 nanoseconds MD simulation 
using GROMACS v5.1.4 for the top 10 complexes with the 
lowest binding energy. Then we performed more extensive 
50 nanoseconds simulations for top five complexes with the 
lowest binding energy. To create the simulation environment, 
we embedded the complexes in a predefined TIP3P water 
model within a periodic cubic box, where the minimal 
distance of 12 Å was maintained between any ligand atom 
and the box edge to prevent interactions with periodic images 
throughout the MD simulations. During the simulations, we 
employed Newton’s classical equation of motion to calculate 
the atomic movements over time. In addition, we determined 
electrostatic potentials using the widely used 6-31G (d,p) 
basis set in Gaussian 16 and subsequently converted into 
partial charges through the Antechamber program. The 
protein and ligand were subjected to the AMBER99SB-IDLN 
all-atom force field and GAFF force field, respectively. The 
system was then neutralized by adding Na+ and Cl- ions using 
GROMACS genion tool, achieving an ionic strength of 150 
mM. Following neutralization, the system underwent an initial 
energy minimization using the steepest descent algorithm to 
achieve force convergence of <1000 kcal/mol/nm. Once the 
initial minimization was completed, we equilibrated the whole 
system for 5 ns at 300 K degree and 1 bar pressure using 
canonical  and the isothermal-isobaric ensembles, allowing 
for keeping the box volume minimized.
	 We computed the long-range electrostatic interactions 
using the particle-mesh Ewald summation, and constrained 
bond lengths through LINCS algorithm. Each compound-
protein complex underwent three independent runs. In 
addition to the five complexes, two critical control groups 
were incorporated, namely the protein in apo form and the 
protein complexed with ATP. We conducted the trajectories 
analysis by excluding the initial 20 ns for system equilibrium. 
We evaluated the stability of the simulations by measuring 
RMSD and RMSF throughout the trajectories. We analyzed 
the secondary structure behaviors, and performed free 
energy calculations (20,21).
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