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Introduction
Autism Spectrum Disorder (ASD) is a complex 

neurodevelopmental disorder that now affects 1 in 68 
children (1, 2). Those diagnosed with ASD are afflicted by 
social impairment, communicative issues, and repetitive 
behavior. In addition to these symptoms, the ASD group 
also has difficulties in motor coordination, attention, 
and physical health issues. Studies have reported that 
only 56% of those with ASD are able to graduate from 
high school, and the majority of those with ASD end up 
being dependent on parents or caregivers for their entire 
lifetime (3, 4). Unfortunately, many of these problems are 
unknown to the general public. 

Since the 1980s, the prevalence of ASD has been 
rapidly increasing. It is the fastest-growing serious 
developmental disability in the U.S (5, 6); however, 
scientists are still unable to find its exact cause.  Though 
not fully responsible for ASD, genes affecting synaptic 
function and connectivity are theorized to play the largest 
role, while other factors, such as the environment, play 
a lesser but still important role (7). Although there is no 
cure for autism, its symptoms can be lessened through 
a combination of behavioral therapies and drugs 
(psychoactive and anticonvulsant medications) (8, 9). 
Many of these medications, however, often come with 
a wide variety of harmful side effects, discouraging the 
use of such drugs (10). 

Currently, no imaging biomarker exists to identify 
autism in young children.  Thus, there is no conclusive 
test to determine whether or not a child has the disorder,  
making the average age for a definitive diagnosis very 
late, averaging 5.7 years old (11). 

Discovery of the underlying brain mechanisms 
that support or alter brain function in ASD would 
provide a basis for understanding how treatments or 
early interventions could reduce the severity of ASD. 
Over the past several years there have been many 
neuroimaging studies trying to better understand how 
the ASD brain works. It has been noted that the head is 
abnormally larger in some children with ASD compared 
to neurotypicals (12, 13). MRI was used to show that 
there is a generalized enlargement of the gray and white 
matter volumes in toddlers with ASD at age 2, compared 
to neurotypicals (14). Using functional magnetic 
resonance imaging (fMRI), it’s been found that functional 
brain connectivity between the front and back of the 
brain is different in ASD compared to controls (15). In 
2011, Kana et al. theorized that “disrupted connectivity,” 
including both under-connectivity and over-connectivity, 
were responsible for the abnormal brain connections in 
ASD (17). These abnormalities are a possible cause of 
the behavioral and cognitive problems associated with 
autism. 

Magnetoencephalography (MEG) is another non-
invasive type of tool to image the brain connections by 
measuring the magnetic fields generated by the brain’s 
neurons (13). MEG provides temporal resolution in the 
millisecond time range and spatial localization below 5mm 
so brain activity can be precisely localized (23, 24). The 
magnetic signals arising from the brain are exceedingly 
small (10-12 to 10-15 Tesla), so Superconducting Quantum 
Interference Devices (SQUIDs) are needed to detect 
these fields.  MEG coherence imaging is often used to 
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Summary
Autism (ASD) is a complex neurodevelopmental disorder 
that affects social interaction and communication, 
often impairing individuals for a lifetime. In our study, 
we used magnetoencephalography (MEG), a non-
invasive brain imaging technique, to identify possible 
biomarkers for ASD. We hypothesized that there would 
be significant differences in brain connectivity patterns 
between the ASD group and the controls.  We recorded 
the brain activity of individuals looking at a stationary 
colorful image while in the resting state. The resting 
state refers to the brain activity of a subject when he or 
she is not engaged in any particular task. We found the 
ASD group had a high concentration of coherent brain 
activity in the frontal lobe, while the control group had 
a high level of coherence in the occipital lobe. Areas of 
high coherence indicate that the brain is well connected 
and communicating with many other areas of the brain. 
In controls, we expected high coherent activity in the 
occipital cortex, since they were looking at a colorful 
picture. In the ASD group, we found that the frontal 
lobe was unusually active. This area is typically used in 
higher-level cognition. These regions of abnormally high 
coherent brain activity indicate possible biomarkers for 
autism. Additionally, the ASD group had a significantly 
lower overall level of coherence than controls.
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look at connectivity and how different brain areas 
are communicating with each other (27). MEG has 
been used to investigate deficits in the auditory and 
somatosensory systems in ASD (18, 19). However, little 
MEG research has been done on the resting state brain 
differences between ASD and controls. While a person 
is at rest, their mind is not focused on or engaged in a 
specific task. Many fMRI studies have been performed 
on normal subjects to detect the default mode network 
(DMN), a well-established network of brain regions that 
is active during resting (20).  FMRI has been used to 
detect a weaker connectivity in nine of the eleven areas 
involved in the default mode network in adolescents with 
ASD (21). Studying the resting state may be particularly 
useful because it is often difficult to engage very young 
children in a task, and many more children are able to 
participate in MEG recording during the resting state.  

In  this study, we used magnetoencephalography 
(MEG) to find key differences in the location of brain 
connection activity during rest between individuals with 
ASD and control participants. We hypothesized that there 
would be significant differences in coherence values and 
activity between the two groups. Our results indicate that 
an abnormal amount of functional connectivity occurs 
during the resting state in the frontal lobe in children 
with ASD.   Coherent activity and functional connectivity 
are essentially measures of how much of the brain is 
activated and communicating. These results indicate that 
MEG may hold the key to an imaging biomarker for ASD 
that could be found in infant children. With the knowledge 
of these differences, MEG testing may provide an earlier 
diagnosis of autism. Research has shown that a baby’s 
brain is 80% developed by the second year of life (26). 
If MEG testing can be used effectively prior to this age 
to detect and diagnose children on the ASD spectrum, 
then new treatments, such as drugs or remediation, 
may be tested to determine if they could prevent the 
development of autism. 

Results
The highest coherent brain areas in the gamma band 

and beta bands were seen in the visual cortex in the 
control subject population during the 10-minute resting 
state brain scan. This was expected, since they were 
looking at a colorful picture on the ceiling. The occipital 
cortex receives information directly from the retina, so it 
is important in visual perception and color recognition. 
ASD subjects, on the other hand, had higher coherent 
brain areas concentrated in the frontal lobe, as opposed 
to the visual cortex. The ASD group also had an overall 
lower beta band coherence level (avg: 0.299 +/- 0.045) 
than did the control subjects (avg: 0.345 +/- 0.094) 
{p<0.05, t-test 2.317}, as seen in Figure 1A. In ASD, 
there was a slightly lower gamma band coherence level 
(avg: 0.349 +/- 0.063) compared to that of the control 

Figure 1: (A) Average level of beta band (14-30 Hz) coherence 
for each group during resting state with eyes open. There was 
a statistically significant difference between the groups. (B) 
Average level of gamma Band (30 – 80 Hz) coherence for each 
group during resting state with eyes open.  Though there was a 
difference, it was not statistically significant.

Figure 2: A control subject with the highest coherent activity located in the right inferior 
occipital gyrus during the resting state, measured by the beta band (14-30).

Figure 3: An ASD subject having the highest coherent activity in the right inferior frontal 
gyrus during the resting state, measured by the beta band (14-30 Hz). 

A.

B.
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subjects (avg: 0.356 +/- 0.123), which was not statistically 
different {p=0.768, t-test 0.3} (Figure 1B).

Discriminant analysis was performed to determine 
if the locations of brain activity could be used to 
discriminate between ASDs and controls. After 
performance of the coherence analysis across the 
entire brain for two frequency bands, the top coherent 
locations were put into a discriminant analysis. Figures 
2 and 3 are examples of the individuals’ top locations in 
the beta band for a control and an ASD subject.  This 
type of analysis is used to determine if there exists a 
pattern of brain activity that is unique to each group 
and could be used on individuals’ MEG image data to 
determine which group they would belong to. An overall 
group brain map was made for the ASD (N=13) and for 
the controls (N=11).

The discriminant analysis results indicated that 361 
pixels out of 4000 pixels can be used to differentiate 
between the ASD and the control group, with a p-value of 
less than <0.05. Figure 4 shows the beta band locations 
where the resting state brain networks are different 

between groups.  The control subjects have higher 
coherent activity indicated by areas in red, seen primarily 
in the occipital cortex and inferior temporal gyrus. In 
contrast, the ASD group has higher coherent activity 
indicated by green, seen primarily in the inferior frontal 
and middle frontal gyri. Figure 5 shows the gamma band 
results with similar coherent activation patterns.

Discussion
In the resting state, statistically significant differences 

were found between the beta band coherence level of 
ASD subjects and the coherence level of the control 
subjects. The control subjects had higher coherence 
values (0.345) than those with ASD (0.299). 

All of the subjects were expected to have concentrated 
activity in the visual cortex, because they were looking 
at a colorful picture on the ceiling with their eyes open; 
this is our typical method for recording resting state 
brain activity.  Another method for investigating the 
resting state brain activity is performed while the eyes 
are closed, but this method evokes a large amount of 

Figure 4: Comparison of controls and ASDs during the resting 
state in the beta band (14-30 Hz). 361 out of 4000 pixels were 
used to differentiate between the two groups, with a 95% 
discriminant performance level and p< 0.01. ASD subjects 
(green) have the most activity in the frontal lobe, while control 
subjects (red) have the most activity in the occipital lobe. Areas 
of significant coherence have been labeled.

Figure 5: Comparison of ASD and control subjects during 
the resting state in the gamma band (30-80 Hz). 379 out of 
4000 pixels were used to differentiate between the two groups, 
with a 95% discriminant performance level and p< 0.01. ASD 
subjects (green) have concentrated activity in the frontal lobe, 
similar to the beta band, and controls (red) have the most 
coherent activity in the occipital lobe. 
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alpha activity in the occipital cortex. This was seen in 
the previous MEG study (32) that was performed during 
rest with the eyes closed, where they found that there 
was more power in the alpha band in the ASD group. 
We cannot determine if there would have been group 
differences in an eyes-closed condition, and it is difficult 
to compare our results to studies that used the eyes-
closed technique.

When the results of the discriminant analysis of 
the ASD group were compared to those in the control 
group, we discovered that the ASD subjects had a large 
concentration of functional brain connectivity in the 
frontal lobe, which consists of the middle frontal, inferior 
frontal, and superior frontal gyri. These parts of the brain 
collectively assist in problem solving, decision making, 
and controlling purposeful behaviors. This is in contrast 
to the concentration of brain activity in the occipital lobe 
seen in control subjects. When viewing a picture, control 
subjects primarily invoke only visual brain activation 
areas located in the occipital lobe. In the resting state 
eyes-open condition, we found potential biomarkers 
for ASD in the inferior frontal, middle frontal, and 
superior frontal gyri. There were also significantly lower 
coherence values for people with autism, indicating 
weaker connectivity between regions in the brain.  

After performing a discriminant analysis in the 
gamma band frequency (30-80 Hz), coherent brain area 
differences were found for both groups. These findings 
suggest that ASD subjects may not actually be visually 
viewing their surroundings, but are internally engaging 
in some higher level of cognitive brain activity. The 
gamma band is associated with perceptual processing, 
attention, arousal, object recognition, and language 
perception (33), so this may suggest that subjects in 
the ASD group, instead of simply looking at the image, 
are doing some other internal cognitive task.  Another 
possible explanation for these results is that children with 
autism use different brain networks than neurotypicals 
for basic tasks like looking at a picture. This may just be 
a disruption in one of the intrinsic connectivity networks 
(the DMN is only one of those), and this could easily 
reflect a disruption in either the DMN, Fronto-parietal 
Control Network, Dorsal Attention Network, or Salience 
Network – all having to do with attention focus.  What 
we may be seeing is an inability to regulate between 
internal and external focus of visual attention, causing 
a disruption in top-down cognitive control, which may be 
reflected in the over-active frontal activation seen here.  
That is, the controls use the basic occipital lobe because 
they have “released” their frontal lobes from processing 
- the same may not be true in ASD. 

The location of the lower coherence values seen in 
ASD during rest supports the hypothesis that ASD is 
a brain network disorder.  These MEG imaging results 
display the connectivity networks between regions in 
the brain, as coherence is a measure of connectivity 
between brain regions. Despite the simple task of 
viewing a picture, the ASD group displayed a high level 
of coherent activity in the frontal lobe, which is normally 
active in higher-order functions. These novel results 

shed light on the differences in cortical brain activity 
between ASD subjects and controls. This innovative idea 
to use a resting state brain scan to determine if the brain 
networks can be used as a biomarker for distinguishing 
differences between these 2 groups has the potential to 
be a diagnostic tool and a research tool for looking at 
treatment responses in very young children, specifically 
those that cannot yet communicate. Previous studies of 
coherence using MEG or EEG in these two populations 
during resting have focused on the frequency content of 
the signals on each sensor, providing results in sensor 
space. Our method first images bursts of brain activity 
in the MRI (providing results in source space), then uses 
colors to identify the actual brain regions that are well 
connected to other areas, as opposed to just drawing 
a straight line connecting the EEG electrodes or MEG 
sensors that contain similar frequencies. This MEG 
coherence source imaging (CSI) method allows for a 
precise identification of the actual brain regions that are 
in use during the resting state. 

The biomarkers found in our MEG experiment have 
the potential to lead to the testing for ASD at an extremely 
young age (i.e. less than 1 year old). With ASD becoming 
more widespread, it is imperative that methods are 
discovered to diagnose the disorder earlier. This study 
found significant MEG biomarkers for ASD during the 
resting state. Since our resting test is passive, we should 
be able to use the same type of scan on increasingly 
younger children to help determine at what point ASD 
can be detected by MEG. With MEG becoming a more 
popular tool for diagnosis, we hope to be able to use it to 
diagnose autism during infancy. This will allow treatment 
to be started earlier, which is more likely to lead to 
better outcomes. Additionally, the knowledge of these 
biomarkers allows for an expansion of research to be 
done, specifically on detecting changes in the functional 
network after treatment. 

Future experiments can improve upon this research 
by testing increasingly younger children, until the point 
at which the children develop autism is found. In addition 
to earlier diagnosis, future work could be focused on 
obtaining therapeutic agents that suppress activity in the 
frontal lobe and strengthen neural connectivity, possibly 
ameliorating the symptoms of ASD. With the biomarkers, 
studies can be done to observe treatment responses. 
Researchers could test children with certain puzzles or 
antipsychotic drugs in the hopes of modifying the child’s 
brain waves. After completing the treatment, subjects 
could be brought back after a set amount of time to 
have their brain activity compared to the activity prior 
to treatment. For example, previous studies have shown 
that the chemical GABA is positively correlated with 
gamma activity (36, 37). There are certain antipsychotic 
drugs that are able to modify the amount of GABA in a 
person. Further investigation is required to find a similar 
chemical to change the brain patterns found in ASD. We 
hope that our research on the biomarkers of autism can 
provide a novel approach for bettering the lives of those 
with autism. 
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Methods
Participants

Thirteen participants with ASD (average age: 17.5 
years) and eleven control subjects (average age: 15.2 
years) completed the study. There were no significant 
between-group differences in intellectual functioning, 
as both performed in the Above Average range on the 
Wechsler Abbreviated Scale of Intelligence (WASI; 
Wechsler 1999),  t(17) = 1.08, p = 0.31. Individuals were 
recruited from a nearby hospital, through advertisement, 
and by peer nomination.  Subjects were diagnosed with 
ASD based on the Diagnostic and Statistical Manual 
of Mental Disorders-Fourth Edition-Text Revision 
and confirmed with the Autism Diagnostic Interview-
Revised. All APA Ethical Guidelines were followed, and 
Institutional Review Board approval was obtained from 
all institutions participating in this study. The WASI was 
individually administered. Participation in the study was 
contingent on the individual functioning at least within 
the Low Average range of intellectual ability (>80 Full 
Scale IQ scores on the WASI). Exclusionary criteria 
for ASD and control participants included any known 
history of head injury with loss of consciousness or other 
neurological disorders and the presence of any metallic 
implant that would preclude the use of the MEG scanner, 
(e.g. braces on teeth, pace maker). Control subjects had 
no history of developmental delay, learning disorder, or 
ASD in a first-degree relative.

MEG Procedures and Protocol 	
Each participant underwent a MEG procedure. 

After signing informed consent, subjects changed into 
hospital gowns and removed all metal from their body.  
Three small electrode coils used to transmit subject 
location information to the neuromagnetometer probe 
were affixed to the forehead with two-sided tape. Two 
more coils were taped on each cheek, in front of the 
ear canal opening. A commercial videotape eraser was 
used to demagnetize dental work if needed. Participants 
then lay on a bed in a magnetically shielded room. The 
neuromagnetometer helmet containing the detector 
array was placed around the participant’s head in close 
proximity to most of the cortical surface. The participant 
was asked to avoid both eye and body movements.

MEG Data Acquisition and Pre-processing
Brain activity was recorded non-invasively 

using a 148-channel whole head MEG system (4D 
Neuroimaging, Magnes WH2500) with magnetometer 
type sensors. This sensor is a Super Conducting 
Quantum Interference Device (SQUID), filled weekly with 
liquid helium to keep it at superconducting temperatures. 
During acquisition, magnetic field changes in tesla units 
were recorded at 148 locations around the head with a 
sampling rate of 508 times per second. The data were 
band-pass filtered from 0.1 to 100 Hz and continuously 
recorded for later analysis. A 10-minute resting state 
brain scan was performed with the subjects’ eyes 
open. In post-processing, the data were then band-
pass filtered from 3 to 85 Hz to reduce environmental 

artifacts. A notch filter at 60 Hz was used to eliminate 
the power line frequency. Additional noise artifacts due 
to heart and body movements were eliminated using an 
independent component analysis (ICA) algorithm on the 
data, if needed. This ensured that the MEG data only 
contained signals from the subject’s brain. Data were 
then further band-pass filtered into two frequency bands: 
Beta (14-30 Hz) and Gamma (30-80 Hz). These two 
frequencies are frequently used in research, because 
of their association with consciousness and cognitive 
tasks, respectively. Beta brain waves are associated 
with normal waking consciousness, as well as logic and 
critical reasoning.  Gamma waves are associated with 
high-level information processing.

MEG Coherence Analysis 
Synchronization of oscillating neuronal activity can 

be quantified by calculating the coherence between 
different brain regions (27). The resting state brain 
activity was analyzed with our coherence source imaging 
(CSI) technique to identify active cortical networks. The 
cortical networks that were imaged contained sources 
that interacted or communicated strongly within the 
gamma and beta frequency ranges. A source model of 
the cortical brain surface was created from a standard 
MRI (from a child). The MRI was segmented, and the 
brain surface was represented by a cortical model of 
approximately 4,000 dipoles, each having an x, y, and z 
orientation at each site. This model was then morphed 
to fit the digitized head shape collected during the MEG 
acquisition. The accuracy of forward model calculations 
was enhanced by utilizing a spherical model of the 
head that exactly matched local skull curvature for 6 
different regions of the brain, corresponding to the front, 
middle and back of each hemisphere. This multisphere 
technique has been demonstrated to be accurate for 
MEG solutions (28). To calculate coherence, the MEG 
data were first imaged on the MRI using the MR-
FOCUSS, and a connectivity map was created for each of 
these locations (27). MR-FOCUSS, a current distribution 
source imaging technique, was used to image the high 
amplitude bursts of brain activity that occurred during the 
10-minute resting state (29). The coherence between 
frequencies within each band across each of the 
4,000 modeled locations was determined. Coherence 
quantifies the network connectivity that underlies the 
resting state brain activity. Statistical analysis of the 
cortical coherence level (0 to 1) was used to quantify 
differences in network connectivity between groups. 
A region-of-interest (ROI) tool was used to identify 54 
regions in the brain (27 in each hemisphere). MEG Tools 
uses a nonlinear volumetric transformation of the brain 
to transform MEG coordinates to these standard brain 
coordinates [30]. This enabled the ROI tool to access 
an atlas of Brodmann area identifiers and an atlas of 
cortical structures (31).  

Group Difference Testing and Discriminant Analysis 
For each frequency band (beta and gamma), a t-test 

was used to assess the differences in average coherence 
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values between ASD and control subjects. The resting 
state brain activity was also subjected to a discriminant 
analysis for each frequency band. Brain regions with 
statistical significance were identified with a p-value less 
than 0.05. The Statistica program was used to perform 
the statistical analysis of the coherence levels between 
the ASD group and the control group of subjects. The 
t-test indicated that the results were significant, with 
a p-value less than 0.05, meaning that our results are 
highly unlikely to be due to chance.
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