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the cellular and molecular levels. Different cancer 
patients harbor unique mutations, which make cancer 
detection and treatment more challenging (2, 3). Tissue 
biopsy is the conventional method used to determine the 
progression of tumors, but this technique is invasive. On 
the other hand, liquid biopsy is non-invasive and is a more 
promising strategy for early cancer detection. Circulating 
tumor DNA (ctDNA) is released by dead tumor cells and 
flows into the bloodstream, which can be used for early 
cancer detection and cancer monitoring (4). Some ctDNA 
is released from circulating tumor cells (CTCs), which 
are tumor cells that separate from the tumor and enter 
the bloodstream (5). Besides CTCs, ctDNA can also 
be derived from tumor-derived exosomes (6). Recent 
research conducted at Stanford University has developed 
a method called CAPP-Seq that evaluates ctDNA to 
profile lung cancer and has the potential to reduce costs 
and increase detection sensitivity, which refers to how 
strong the stimulus must be for the technique to detect 
it (7). CAPP-Seq, also known as cancer personalized 
profiling by deep sequencing, is a sequencing method 
used to quantify cell-free DNA released from tumor cells 
that entered the bloodstream (8). Currently, more than 
40 commercial companies are racing to develop liquid 
biopsies; however, the gene panels generated have little 
overlap. Gene panels contain genes associated with 
the disease under study, cancer in this case, and are 
utilized to analyze mutations in a given sample. This 
function benefits cancer diagnosis due to the disease’s 
known association with mutations. Companies such as 
Guardant Health, Foundation Medicine, and Grail each 
have their own, specialized gene panels, which can lead 
to conflicting and even confusing results. To generate 
consistent and comparable results as well as to reduce 
the cost of the test, an optimization algorithm based on 
publicly available data is in great demand. 
	 In addition to liquid biopsy, another technique that is 
less invasive than traditional biopsy is medical imaging. 
This method, including CT and MRI scans, can identify 
“internal” tumor types like pancreatic cancer. Both 
imaging and liquid biopsies are noninvasive techniques 
that can aid in diagnosing cancer, identifying its severity, 
and monitoring its progression. Because medical imaging 
requires the use of radiation to produce detectable 
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Introduction
	 Cancer is a life-threatening disease and is the 
second-leading cause of death in the United States. 
The estimated number of new cases in 2016 was more 
than 1.68 million, and the estimated number of deaths 
was more than 595,000 (1). Even though different types 
of cancer are similar, in that they involve abnormal cell 
growth and can invade other parts of the body, a process 
known as metastasis, they are heterogeneous both at 
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signals, there is a higher chance this technique may not 
detect the tumor at an early stage due to the tumor’s 
miniscule size. On the other hand, liquid biopsy is highly 
sensitive and may be more effective at detecting earlier 
stages of cancer. 
    Due to the emerging abundance of high-throughput 
sequencing data (e.g., exon sequencing) for different 
types of human cancer patients, we can utilize meta-
analysis to identify cancer biomarkers using databases 
such as cBioPortal (9) and The Cancer Genome Atlas 
(TCGA) (10), each of which has unique features and 
functions. cBioPortal specializes in gathering different 
cancer datasets from various projects into a more 
accessible source for researchers, and TCGA focuses 
on genomic changes in 33 types of cancer. The high-
throughput data of thousands of patients have been 
generated and deposited in these data repositories. 
These databases have played a great role in pushing 
cancer research forward, especially in regards to early 
cancer detection and prognosis (11). By making the data 
broadly accessible, more researchers can now use these 
resources to analyze data and discover new biomarkers 
that may influence cancer initiation and progression. 
Identifying what these biomarkers are may lead to 
the development of therapeutic targets for cancer. On 
January 12, 2016, President Barack Obama announced 
the initiation of Cancer Moonshot, a program led by Vice 
President Joe Biden that is intended to detect cancer at 

an early stage, prevent cancer, and make more therapies 
available to patients (12). The large-scale attention 
cancer research has been given indicates that this big 
data will revolutionize cancer diagnosis and treatment. 
To provide answers for the following three hypotheses, 
we developed an algorithm named the Dynamic Gene 
Search (DyGS) algorithm: 
	 Hypothesis 1. Some of the well-known, common 
genes associated with cancer, such as TP53, BRAF, and 
the RAS gene family, will be present in all or most of the 
gene lists generated since many of these genes have 
been reported in many cancer types. 
	 Hypothesis 2. The gene lists of the 12 different 
cancer types will somewhat overlap due to the 
hypothesized presence of the common cancer-
associated genes. However, some genes may be 
mutated in specific cancer types, and the prediction is 
that less than half of the genes in the lists will be like this. 
	 Hypothesis 3. The length of the gene lists for 
some cancers may be longer than those of others. 
For example, breast-invasive carcinoma (BRC) and 
prostate adenocarcinoma (PRAD) may have longer lists 
than brain lower grade glioma (LGG) because BRC is 
genetically more heterogeneous, and the genes mutated 
in PRAD tend to have lower frequencies across patients. 
   The DyGS algorithm designed innovative gene 
panels to cover the largest number of patients with the 
smallest number of gene mutations to facilitate early 

Figure 1. Bar graph displaying the total number of patients (blue bars) and the number of patients with mutations (red 
bars) in each of the 12 cancer types. LGG for Brain Lower Grade Glioma, BRC for Breast Invasive Carcinoma, COAD for 
Colorectal Adenocarcinoma, HNSC for Head and Neck Squamous Cell Carcinoma, KIRC for Kidney Clear Cell Carcinoma, LIHC 
for Liver Hepatocellular Carcinoma, LUAD for Lung Adenocarcinoma, OV for Ovarian Serous Cystadenocarcinoma, PRAD for 
Prostate Adenocarcinoma, SKCM for Skin Cutaneous Melanoma, STAD for Stomach Adenocarcinoma, and THCA for Papillary 
Thyroid Carcinoma. 
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cancer detection. On average, the algorithm selected 
3.5% of mutated genes for inclusion in the gene 
panels. Therefore, DyGS is a highly effective method 
to generate gene panels for liquid biopsy. Moreover, 
the top genes for each of the 12 gene panels included 
some commonly mutated genes such as TP53, IDH1, 
APC, BRAF, and MUC16, all of which occur in more than 
50% of samples. Other top genes had low frequencies, 
including NRAS and HRAS, whose frequencies were 
below 5%. Many of the genes in the gene panels 
were mutated in only specific cancer types, but some 
of them were common, such as TP53, BRAF, KRAS, 
PIK3CA, and EGFR. Also, the gene panels included 
many druggable genes as annotated in the Drug-Gene 
Interaction Database (DGIdb) (13). An average median 
of 40% of each gene panel was druggable. Thus, the 12 
gene panels generated by the DyGS algorithm can be 
used not only as biomarkers for early cancer detection, 
but also as therapeutic targets for cancer treatment. This 
study is innovative because data was generated by the 
state-of-the-art technique exon sequencing, abundant 
samples from thousands of patients were used, and 
novel biomarkers with significant drug potential were 
identified. Therefore, based on these findings, clinicians 
can use the biomarkers for early cancer detection and 
personalized treatment, pharmaceutical companies can 
develop drugs based on the biomarkers identified, and 
researchers can understand more about cancer biology 
by conducting further studies. 

Results

Dynamic searching algorithm (DyGS) for 12 cancer 
types
	 Dynamic Gene Search (DyGS) is a computational 
algorithm designed to dynamically search for and 
create an effective mutation gene panel that covers the 
maximum number of cancer cases possible. Maximum 
coverage can be achieved by selecting mutations 
with the highest frequencies in the samples, obtained 
through downloading cBioPortal datasets, and renewing 
the matrix, formed through combining the datasets using 
customized Perl script, until all samples with mutations 
are covered. In the case where two mutations occur at 
the same frequency, mutations that are annotated as 
clinically actionable will be selected. Using this method, 
the most commonly occurring—and druggable—
mutations are covered. DyGS was implemented using 
both the Perl and R programming languages to analyze 
the matrices generated, and this algorithm was applied 
to the 12 cancer types with the highest number of new 
cases and death rates. 
	 From data collected from various sources, the 
average number of patient samples is more than 700 

(Figure 1, blue bars). As indicated by the red bars, the 
average of the mutated-sample-to-total-sample ratios is 
about 70% (Figure 1, red bars) with the non-mutated 
samples resulting from Among these cancer types, 
colorectal adenocarcinoma (COAD) has the smallest 
ratio of 51%, while BRC has the largest ratio of 90%. 
	 After applying DyGS to the mutated samples to 
each cancer type, we generated a list of the most 
comprehensive genes, whose mutations collectively 
cover all the patient samples. As shown in Figure 2, the 
average number of mutated genes for each cancer type 
is about 1800. For example, BRC has 2343 mutated 
genes, and stomach adenocarcinoma (STAD) has 2409 
mutated genes. Because of the enormous number of 
mutated genes for each tumor type, it is impractical to 
include all of them in a gene panel. Therefore, DyGS can 
effectively reduce the number of genes in the panel. For 
instance, only about 3.5% of mutated genes are needed 
to cover all the patients. For COAD, only 12 out of 1781 
mutated genes, or about 0.7% of genes, were needed to 
effectively cover the patients (Figure 2). 
	 The top ten genes with their mutation frequencies 
across samples are represented in Table 1. For each 
cancer type, there is always a mutated gene that occurs 
most often. For example, TP53 is the most commonly 
mutated gene in several cancers, including ovarian (OV) 
at 87.0% frequency, head and neck (HNSC) at 70.3%, 
STAD at 48.1%, lung (LUAD) at 45.8%, liver (LIHC) at 
32.2%, BRC at 31.9%, and PRAD at 19.6%. For the 
other cancer types, IDH1 (82.7%), APC (72.5%), BRAF 
(61.6%), MUC16 (58.3%), and VHL (49.0%) were the 
most mutated gene for LGG, COAD, papillary thyroid 
carcinoma (THCA), skin cutaneous melanoma (SKCM), 
and kidney clear cell carcinoma (KIRC), respectively. It 
is notable that most of the other mutated genes in the top 
ten lists occur at very low frequencies of less than 5%. 
For instance, the second-largest frequency mutation in 
THCA, NRAS, occurs in 8.7% of the patients, and the 

Figure 2. Bar graph displaying the total number of genes 
(blue bars) and the number of genes selected using the 
DyGS algorithm (red bars) in each of the 12 cancer types.  
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third-largest frequency gene HRAS occurs in 3.6% of 
the patients. Starting from the fourth gene, the mutation 
frequency falls below 3%. 

Mutated genes with cancer-type specificity
	 To explore cancer-type specificities for mutated 
genes, unsupervised clustering of the 497 mutated 
genes across 12 cancer types was performed (Figure 
3). Most of the mutated genes were mutated in specific 
cancer types, represented by the horizontal red bands. 
For example, about 20% of the mutated genes were 
exclusive to PRAD and BRC each. To name a few, 
SPINT3, CXCR3, EWSR, SMO, PPR2, and AMER1 are 
specific to BRC, while PDK, MAP3K4, OR6C76, MLLT4, 
EPHB2, and ETV1 are specific to PRAD (14-20). On 
the other hand, there are some mutated genes that are 
common to many tumor types, including TP53, BRAF, 
KRAS, PIK3CA, EGFR, ARID1A, PTEN, and ATM. The 
unique distribution of mutated genes in each cancer 
type confirms the approach implemented in this study by 
investigating each type separately. 

Drug-gene networks and clinical implications
	 A large proportion of the mutated genes are 
druggable, according to the Drug-Gene Interaction 
Database (DGIdb). The detailed associations are 
presented in Table 1 and Figure 4. For example, from 

this study, LUAD, the most lethal cancer in the United 
States, has 11 druggable genes: EGFR, BRAF, ERBB2, 
PIK3CG, AR, ATM, ABL1, MET, NTRK1, KDR, and 
GRIN2A. Erlotinib, Gefitinib, and Afatinib can target 
EGFR (Figure 4). The former two are first-line drugs 
used for treating lung cancer with the EGFR mutation 
(21). Afatinib has shown clinical benefit in lung cancer 
patients with brain metastases (22). For the other ten 
genes, there are 25 drugs that can be used to target these 
genes. For example, AR can be targeted by five drugs: 
Nilutamide, Flutamide, Bicalutamide, Fluoxymesterone, 
and Oxandrolone. Similarly, BRAF can be targeted by 
four drugs: Sorafenib, Dabrafenib, Vemurafenib, and 
Trametinib. 
	 These results demonstrate that the gene panels 
generated from DyGS can be used not only for cancer 
diagnosis, such as liquid biopsy, but also for cancer 
treatment since many of these genes included in the 
panel can be targeted by various drugs. Two potential 
clinical applications are that non-cancer-related drugs 
may be used to treat cancer and cancer-type-specific 
drugs may be used to treat patients of other cancer 
types. 

Discussion
	 Recent technological advancements in DNA 
sequencing allow for the further development of 
personalized medicine by identifying tumorigenic and 
metastatic gene mutations and pathways and extending 
therapeutic target opportunities (23). Due to the wave 
of new technologies available for cancer patient care, 
tremendous amounts of cancer mutation data have been 
accumulated on both driver and passenger mutations 
(24). Driver mutations are those defined to promote 
cancer development and are therefore sought after 
as therapeutic targets, while passenger mutations are 
those that do not directly stimulate cancer initiation and/
or progression. Among the cancer treatment options 
available, liquid biopsy, or blood sample tests, have 
recently emerged as the most promising strategy due to 
its more convenient and safer clinical use and lower cost 
(25). By using effective gene panels, it is unnecessary 
to sequence the whole human genome to conduct 
cancer diagnosis; instead, one can evaluate only the 
biomarkers in the gene panels. Some concerns to liquid 
biopsy are: 1) the inconsistency due to the abundance 
of companies developing their own gene panels and 2) 
the high cost used to accommodate for the enormous 
number of genes—often several hundred—included in 
the gene panels. 
	 To address these problems, we developed the 
DyGS algorithm to optimize gene panels for 12 common 
cancer types by taking advantage of publicly available 
high-throughput genomics data. The novel Dynamic 

Table 1. Top 10 DyGS-selected genes for each of the 12 cancer 
types.
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Gene Search (DyGS) algorithm was designed to cover 
the maximum number of patients using the minimum 
number of gene mutations. The 12 gene panels the 
DyGS algorithm selected used only about 3.5% of 
the original gene mutation pool, while covering every 
patient sample. Some of these panels include common, 
highly mutated genes that have a mutation frequency 
higher than 50%, while others include genes that have 
low frequencies of 5% or less. Although these gene 
mutations do not occur frequently, they were selected 
because the patients they cover do not have mutations 
in other, more frequently mutated genes. Many of the 
genes the DyGS algorithm selected were mutated in 
specific cancer types; in fact, about 20% of some of the 

cancer gene panels, such as for BRC, were specific to 
individual cancer types. An essential future direction 
of this study is clinical application. According to the 
Drug-Gene Interaction Database (DGIdb), the gene 
panels include many genes that are druggable. About 
40% of each gene panel is druggable, which indicates 
that the DyGS-generated gene panels can be used for 
early cancer detection as well as therapeutic targets in 
treatment methods. 
	 The DyGS algorithm can be applied in many areas 
of medical research. First, DyGS can be used to analyze 
additional cancer types other than the 12 investigated in 
this study. Second, other complicated genetic diseases 
can use this algorithm, including heart disease, diabetes, 
and obesity. Third, the DyGS algorithm can be applied to 
other genetic alterations, such as copy-number variations, 
epigenetic changes, and gene fusion. However, there 
are still a few limitations to this algorithm. First, because 
of the nature of the algorithm and its characteristic of 
covering all the samples, some cancers’ gene panels 
are larger than others, making them more expensive. For 
example, PRAD has 153 genes, while COAD only has 
12 genes. Second, generating an optimal gene panel for 
all 12 cancer types is difficult since many of the genes 
included in the panels occur more frequently in specific 
cancers, and therefore, the common gene panel would 
have to be large to cover a significant portion of the 
patients, which leads to greater costs. Third, the current 
DyGS algorithm includes missense mutations, which is 
provided by cBioPortal, but does not take into account 
other types of mutations, such as insertion/deletion and 
genomic amplification. 

Figure 3. Heatmap representing the presence (red) or absence (green) of DyGS-selected mutated genes in the 12 cancer 
types. Columns depict genes, and rows depict cancer types. 

Figure 4. Network displaying the relationships 
between DyGS-selected genes (blue dots) and 
drugs targeting them (red dots) retrieved from 
Drug-Gene Interaction Database (DGIdb) for lung 
adenocarcinoma (LUAD). 
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Materials and Methods

Data download for 12 cancer types
	 cBioPortal for Cancer Genomics is a database 
originally developed at Memorial Sloan Kettering Cancer 
Center (MSK) and hosted by the Center for Molecular 
Oncology at MSK. Currently, it is the most comprehensive 
data source for cancer genomics data and includes The 
Cancer Genome Atlas (TCGA). TCGA is a publically 
available data source that contains comprehensive 
genomic changes in 33 types of cancer. For this study, 
mutation datasets of the 12 cancer types with the highest 
number of new cases and death rates (LGG, BRC, 
COAD, HNSC, KIRC, LIHC, LUAD, OV, PRAD, SKCM, 
STAD, THCA) were downloaded from cBioPortal (http://
www.cbioportal.org/). These mutations were detected 
by exome sequencing, which only involves the exons, 
or the expressed regions, of the DNA. This technique 
is much less costly than sequencing the entire human 
genome. For each cancer type, multiple datasets were 
collected and combined with customized Perl script as a 
matrix. 

Data processing for mutation data
	 Because the data were downloaded from different 
sources, it was processed prior to further analysis. For 
each tumor type, all the samples were combined into 
a sample file and all the genes were combined into a 
gene file, both of which were achieved by using the 
Linux command “cat”. To prepare the data for analysis, 
(0,1)-matrices were generated from each of the datasets 
by customized Perl script. The 0 in the matrix represents 
the absence of the gene mutation in the sample, while 
1 indicates the presence of the gene mutation in the 
sample. In addition, a number matrix of the original files 
was created. The number matrix denotes the combined 
number of times the gene mutation appears across 
samples of all the original files. 

Dynamic gene searching algorithm
	 In order to design a gene panel that covers the 
greatest number of patients and the smallest number 
of mutated genes, R and Perl programming languages 
were employed and used to analyze the matrices 
generated. We designed an algorithm named Dynamic 
Gene Search (DyGS) to achieve this goal and applied it 
to each cancer type. 
First, for each missense mutation on the gene, a 
frequency was calculated by counting the number of 
samples with the mutated gene divided by the total 
number of samples. In order to obtain the shortest gene 
panel possible, the gene list was sorted in descending 
order of the frequency calculated, and the gene mutation 
with the maximum patient coverage was selected and 

added to the gene panel. Second, the matrix was 
renewed by deleting the selected gene along with the 
samples it covered. The renewed matrix served as the 
input for the next round. Third, this process was itinerated 
until all the samples with mutations were covered. If 
there was a tie in any step, a tiebreak rule was applied: 
when a tie occurred, mutations with clinically actionable 
or functional annotations were selected instead of those 
that were not. Clinically actionable annotations indicate 
that the gene is druggable according to the Drug-Gene 
Interaction Database (DGIdb). Functional annotations 
represent the genes curated in the Cancer Gene Census 
database, which is a catalog that includes genes with 
cancer-causing mutations. So far, it includes about 600 
genes. By applying all these conditions, the gene panel 
output from the program can be considered the optimal 
gene panel that has the highest patient coverage and 
smallest number of mutations. The codes used for this 
study are deposited in GitHub under the repository name 
“DyGS” at https://github.com/jwang00/DyGS.git. 

Drug-gene relationship retrieval
	 The Drug-Gene Interaction Database (DGIdb) is a 
web interface that identifies known and potential drug-
gene relationships. For each entry, different evidence 
levels were given by the number of sources and the 
number of PubMed articles. A higher value in these 
two areas represents more reliable relationships. In this 
study, in order to achieve more stringent relationships, a 
cutoff of three sources was set. 

Data analysis and presentation
	 The bar graphs presented in this study were 
constructed in Adobe Illustrator Version 18.1.1, the 
heatmap was originally generated in Cluster 3.0 for 
Mac OS X (http://bonsai.hgc.jp/~mdehoon/software/
cluster/software.htm#ctv) and Java TreeView 1.1.6 
(ht tps://sourceforge.net /projects/ j t reeview/f i les/
jtreeview/1.1.6/) and edited in Illustrator, and the drug-
gene network was created in Cytoscape Version 3.4.0 
(http://www.cytoscape.org/download.php) and edited in 
Illustrator. Cluster and TreeView are software programs 
that originally analyze and visualize data from DNA 
microarray experiments but extended to other genomic 
datasets. Cluster organizes and analyzes the data, while 
TreeView presents the organized data in a heatmap. 
Cytoscape is a software platform used for visualizing 
interaction networks and pathways and integrating them 
with annotations. 
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