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SUMMARY

Dissonance is perceived when certain musical notes 
are heard simultaneously and create a harsh, clashing 
feeling. Consonance, the opposite of dissonance, is 
perceived as a pleasant harmony of musical notes. 
Timbre is the defining characteristic of sound which 
differentiates sounds from different sources. This study 
attempts to determine the cause of perceived dissonance 
and the effect of timbre on dissonance. We attempt 
to corroborate Hermann von Helmholtz’s theory of 
temporal dissonance, which proposes that dissonance 
results from beat frequencies created by interference of 
harmonic overtones. Our procedure examines algebraic 
and graphical representations of sound waves of the nine 
standard musical intervals from the minor second to the 
octave, produced on piano, ranging from dissonant to 
consonant. No clear correlations were found between 
different quantitative metrics and dissonance. The study 
also compares graphs of intervals from a piano and a 
human voice, which have different timbres. We noted 
that the graphs of piano notes, which have a “harder”-
sounding timbre, had higher ratios of concavity changes 
to beat period than the graphs of sung notes, which have 
a “softer” timbre. Further research is planned to study 
whether graphical characteristics can reveal qualities of 
timbre.

INTRODUCTION

Timbre is the tonal quality of sound. Unlike pitch or 
amplitude, timbre distinguishes a note on a piano from the 
same note on a violin. Timbre is perceived when the human 
brain interpretively fuses pure tones, or sinusoidal sound 
waves, that are at harmonic or nearly harmonic frequencies 
into one pitch known as a complex tone. The term “harmonic” 
refers to a harmonic series, a sequence of frequencies 
related to a fundamental frequency by whole number ratios 
(1). Each frequency in the sequence is a harmonic. Different 
instruments have different timbres due to the nature of their 
materials, such as strings or air columns. Although the 
same note or pitch played on each instrument has the same 
harmonic series, the relative loudness, or amplitudes, of the 
harmonics are different, thus creating distinct sound qualities 
for each instrument.

In music, combinations of two notes can be characterized 
by the musical intervals between the notes. These intervals 
are distinguished by comparing how dissonant they sound―
that is, how harsh the notes are together. Consonance and 
dissonance can be described as the harmony and lack 
of harmony, respectively, between sounds and are easily 
and intuitively discernable by ear. Dissonant intervals are 

characteristically harsh-sounding, whereas consonant 
intervals are not. Hermann von Helmholtz’s theory of 
temporal dissonance states that dissonance occurs when 
there is beating produced from harmonics of complex tones 
interfering with one another, with maximum dissonance 
produced at a beat frequency of around 35 Hz (hertz, cycles 
per second), and that dissonance is dependent on the 
magnitude of the interval between the pitches of the complex 
tones (2). Beat frequencies ranging from 10 to 60 Hz cause 
dissonance because the two frequencies producing it are 
too far apart to be registered as one pitch but too close to 
distinguish as distinct pitches (3). Because the relative 
amplitudes of harmonics for the same pitch played on 
different instruments are different, we hypothesized that the 
same intervals of pitches sounded from different instruments 
would be perceived as having different levels of dissonance.

Mathematician Joseph Fourier proved that all continuous 
functions can be broken up into an infinite number of sinusoidal 
waves (4). The Fourier Transform is able to break up a signal 
or waveform over time into the component sinusoids that 
make it up, representing the sinusoidal functions as graphs 
of amplitude against frequency (5). For complex tones, 
these frequencies are the fundamental frequency, which 
has the greatest amplitude, and its corresponding pure-
tone harmonics. The study used the Fourier Transform to 
determine the equations for the most prominent pure tones 
of musical notes produced by different sources and analyze 
this information.

The aim of this study is to assess what causes perceived 
dissonance in musical intervals and whether timbre has an 
effect on dissonance. We hypothesized that Helmholtz’s theory 
of temporal dissonance is correct. The experiment attempted 
to graphically and algebraically analyze dissonant intervals 
to corroborate Helmholtz’s theory. This included examining 
the frequency of concavity changes in the graphs of sound 
waves as a possible determining characteristic of timbre, 
since adding sinusoidal functions of different frequencies and 
amplitudes results in different patterns of concavity. We also 
hypothesized that timbre affects perceived dissonance.

RESULTS

We tested Helmholtz’s theory of temporal dissonance by 
creating equations to represent the sound waves of intervals 
being played on a piano. We first generated equations 
representing the sound waves produced when individual 
notes are played on the piano by using a Fast Fourier 
Transform (FFT) smartphone application (Figure 1) (6) to 
obtain frequency and amplitude values for the component 
pure tones of each note. We then added these equations 
together to create graphs that represent two notes being 
played simultaneously (Figure 2). Each graph is of a different 
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Figure 1. Fourier analysis of C4 on piano. On the piano used, 
the frequency of the note is 258 Hz rather than 261.626 Hz, which 
is likely due to the piano having gone slightly out of tune over time. 
The horizontal axis is frequency, in Hz, and the vertical axis is 
sound pressure level (SPL), in dBFS (decibels relative to full scale). 
dBFS is used in digital sound recordings, and full scale is the 
maximum loudness discerned by the device. dBFS describes the 
loudness of a sound relative to the full scale. Red asterisks denote 
the thirteen “peaks” for which frequency and SPL were recorded.

musical interval, with nine graphs in total representing the 
nine standard intervals between the minor second (C4-C#4) 
and the octave (C4-C5). All intervals had the lower note C4 
and a higher note to produce the interval. For each interval, 
we calculated the number of beat frequencies between 10 
and 60 Hz produced by the component frequencies of the 
notes in the interval, the observed beat frequency and period 
of the graph representative of the interval, the number of 
changes in concavity of the graph representative of the 
interval on 0 ≤ t ≤ 0.3 s, and the ratio of the number of changes 
in concavity to the beat period of the interval      

,
in order to examine what causes perceived dissonance in 
musical intervals. To find the number of beat frequencies 
between 10 and 60 Hz produced by the component 

Table 1. Table of calculated metrics for the nine musical intervals 
on piano. Intervals are ordered top to bottom from most to least 
dissonant according to Helmholtz’s theory.

frequencies of the notes in the intervals, we calculated the 
beat frequencies produced by all combinations of component 
frequencies for each interval with the equation
       .

We counted the number of beat frequencies which were 
between 10 and 60 Hz for each interval. We found approximate 
beat frequencies and periods for the graphs representative of 
musical intervals by viewing the graphs in an online graphing 
program (7) and estimating the number of full cycles over a 
known time interval. If cycles were unclear, we adjusted the 
time interval until cycles became clear. We then calculated 
the beat frequencies in Hz with the equation

           
in Google Sheets. The beat periods in seconds were 
calculated by taking the reciprocals of the beat frequencies. 
To find the numbers of concavity changes in the graphs of the 
intervals, we created equations for the second derivatives of 
the equations for each interval. We graphed the second 
derivative equations and counted the number of horizontal 
axis crossings over the interval 0 ≤ t ≤ 0.3 s and over one 

Figure 2. Graphs of intervals. These are not the 
original signals, but are equations representative 
of the sound waves created by summing sine 
waves with frequency and amplitude values 
derived from original signals. Played on piano 
ordered from least (top left; a) to most (bottom 
right; i) dissonant according to Helmholtz’s 
theory. The horizontal axis of the graphs shows 
time elapsed in seconds, while the vertical axis 
shows the sound pressure except not to scale.
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Table 2. Table of calculated metrics for the representative equation 
of the C4-C#4 interval on piano created by summing representative 
equations for C4 and C#4 individually (“C4-C#4 sum”, Figure 1i) 
and by recording FFT data for C4 and C#4 played simultaneously 
(“C4-C#4 control”, Figure 2).

beat period (0 ≤ t ≤ beat period), which equals the number of 
concavity changes in the original equations. The intervals 
were ordered from least to most dissonant based on 
Helmholtz’s theory of dissonance (1). There appeared to be 
no clear correlation between dissonance and the number of 
beat frequencies between 10 and 60 Hz produced by the 
component frequencies of the notes in the intervals, between 
dissonance and the observed beat frequency of the graph for 
the interval, between dissonance and the number of concavity 
changes in the graph for the interval over the same time 
interval (0 ≤ t ≤ 0.3 s), or between dissonance and the ratio of 
concavity changes to the period of the observed beating for 
the equation of the interval (Table 1).
We conducted a control experiment to determine how similar 
the equations created by adding the equations for individual 
notes were to equations created for the sound wave of an 
interval. We created an equation representative of the sound 
wave produced by a C4 and C#4 played simultaneously on
the piano. Visually, the control graph (Figure 3) is somewhat 
similar to the graph of the sum of the complex tone equations 
for C4 and C#4 (Figure 2i). We calculated the number 
of beat frequencies between 10 and 60 Hz produced by 
the component frequencies of the notes in the interval, 
the observed beat frequency and period of the graph 
representative of the interval, the number of changes in 
concavity of the graph representative of the interval on 0 ≤ t 
≤ 0.3 s, and the ratio of the number of changes in concavity 
to the beat period of the interval. There are approximately 
four and a quarter beats within the interval 0 ≤ t ≤ 0.3 s in 
the control and approximately five and a quarter beats in 
the experimental results. Consequently, the beat frequency 
and period of the control graph and the summed graph 
(experimental) differ. The number of concavity changes over 
the same time interval and the ratios of concavity changes 
to beat periods also differ greatly between the control and 
sum graphs. However, the numbers of concavity changes in 
one beat period differ by only one, which is relatively small 
(Table 2). The numbers of beat frequencies between 10 and 
60 Hz produced by component frequencies are equal. The 
discrepancies between the two graphs may be in part due 
to the C4 and C#4 not being played exactly simultaneously 
for the control graph, since the sum graph assumes the 
two notes are sounded at the exact same moment with no 
horizontal translation to account for a delay in the playing of 
one note. Despite the discrepancies, we chose to use the 
summation of individual notes played separately rather than 
equations of intervals played directly so that the bottom note 

in all intervals, C4, would have the same equation and serve 
as a controlled variable.

To determine what effect timbre has on dissonance, we 
compared a human voice to the piano. We created graphs of 
the notes C4 and C#4 and the C4-C#4 interval for both 
sources (Figure 4). We also created audio recordings of the 
C4-C#4 interval for both sources. Based on our perception by 
ear, the C4-C#4 interval sounded more dissonant on the 
piano than by voice. We concluded that timbre does affect 
perceived dissonance, affirming the hypothesis that the same 
interval sounded from different sources will be perceived as 
having different levels of dissonance. Individual notes 
sounded “harder” when played on piano than sung, which is a 
phenomenon difficult to describe in words. 

Figure 3. Graph of C4-C#4 interval (minor second) played on 
piano. This is not the original signal but rather an equation repre-
sentative of the original signal created by summing sine waves with 
frequency and amplitude values derived from the original signal. 
The equation is not the sum of the equations for C4 and C#4.

Figure 4. Graphs of C4 and C#4 notes. Not the original signals, 
but instead equations representative of the sound waves created by 
summing sine waves with frequency and amplitude values derived 
from original signals. C4-C#4 interval (minor second) created by 
adding the equations for the C4 and C#4 notes. Sung by voice (a, 
b, c) and played on piano (d, e, f).
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Table 3. Table of calculated metrics for C4 and C#4 notes. Not the 
original signals, but instead equations representative of the sound 
waves created by summing sine waves with frequency and ampli-
tude values derived from original signals. C4-C#4 interval (minor 
second) created by adding the equations for the C4 and C#4 notes, 
on piano and by voice.

Using the data processing pipeline outlined above, we an-
alyzed the individual C4 and C#4 notes for piano and voice, 
as well as the C4-C#4 interval by voice (Table 3). For both C4 
and C#4, the piano note graph had a higher ratio of concavity 
changes to beat period than the same note by voice (Table 
3). For C4, the number of concavity changes over the same 
time interval and the number of concavity changes in one 
beat period are also lower for voice than for piano. However, 
for C#4, the number of concavity changes over the same time 
interval is higher for voice than piano, while the number of 
concavity changes in one beat period is the same for both 
piano and voice. For the C4-C#4 interval, the number of con-
cavity changes over the same time interval and the ratio of 
concavity changes to beat period are higher for piano, and 
the number of concavity changes in one beat period is higher 
for voice. The number of beat frequencies between compo-
nent frequencies between 10 and 60 Hz is the same for piano 
and voice. The values of the beat frequencies are also rela-
tively similar, which is expected because the harmonic fre-
quencies for the same note should be the same regardless of 
the note source.

DISCUSSION

In this investigation, we hypothesized that Helmholtz’s 
theory of temporal dissonance, which states that dissonance 
occurs when there is beating produced from harmonics of 
complex tones interfering with one another, with maximum 
dissonance produced at a beat frequency of around 35 Hz 
(hertz, cycles per second), and that dissonance is dependent 
on the magnitude of the interval between the pitches of the 
complex tones (2), is correct. We examined the nine standard 
musical intervals from the minor second to the octave. The 
musical interval from C4 to C#4 is a minor second because 
the notes are adjacent to each other on a piano with no key 
in between. To the ear, the two notes played simultaneously 
on the piano sound very dissonant because they are very 
close in pitch but perceptibly different, and there is a feeling 
of unresolved tension; according to Helmholtz’s theory, the 
minor second is the most dissonant interval because the 
harmonics of the two pitches interfere to produce the most 
beat frequencies close to 35 Hz. The octave is the least 
dissonant (most consonant) interval according to Helmholtz’s 

theory, with the frequencies of its two pitches related in a 1:2 
ratio (one note’s frequency is double that of the other). To the 
ear, two notes that are an octave apart sound like a high and 
low version of the same pitch. For example, imagine a grown 
man and a little girl singing the same note; most likely, they 
will be singing one or multiple octaves apart; to bystanders, 
there would be no dissonance created from the two sounds. 
There are also intervals beyond the octave, but these were 
not included in this study.

We attempted to corroborate Helmholtz’s theory by 
conducting graphical and algebraic analysis of musical 
intervals played on a piano passed through a Fast Fourier 
Transform. We did not find any clear correlations between 
dissonance and the number of beat frequencies between 10 
and 60 Hz produced by the component frequencies of the 
notes in the intervals, between dissonance and the observed 
beat frequency of the graph for the interval, between 
dissonance and the number of concavity changes in the 
graph for the interval over the same time interval (0 ≤ t ≤ 0.3 
s), or between dissonance and the ratio of concavity changes 
to the period of the observed beating for the equation of the 
interval (Table 1). The results of the study do not conclusively 
support Helmholtz’s theory of temporal dissonance. 

We also hypothesized that timbre, the tonal quality of 
sound, has an effect on perceived dissonance. From listening 
by ear to the same interval (C4-C#4) from different sources 
(a piano and a human voice, in our case), we concluded 
that timbre does affect perceived dissonance. We examined 
the frequency of concavity changes in the graphs of sound 
waves as a possible determining characteristic of timbre, 
since adding sinusoidal functions of different frequencies 
and amplitudes results in different patterns of concavity. We 
repeated the graphical and algebraic analysis for intervals 
and individual notes played on a piano and sung by voice. Our 
results did not show consistent differences between notes 
and intervals sounded by voice and those played on piano. 
For the C4 note, the metrics for voice were consistently lower 
than the metrics for piano, but, for the C#4 note and C4-C#4 
interval, some metrics were higher for voice, and some were 
higher for piano. To better examine whether the selected 
metrics are correlated to timbre, more notes and intervals 
should be tested, as well as more timbres.

In order to better draw conclusions regarding how sound 
waves interfere to produce dissonance and what could 
graphically signify dissonance, data and graphs for more 
different intervals should be gathered to determine a clearer 
trend. Intervals beginning with notes other than C4, as well 
as those beyond the octave, should be considered. As the 
control experiment indicated that the equations created by 
summing equations for individual notes differ from equations 
created from sounded intervals, it is a good idea to create 
equations from sounded intervals and conduct the same 
analyses and compare the results.

When we compared the same interval (C4-C#4) on piano 
and by voice, we found that the number of concavity changes 
over the same time interval and the ratio of concavity chang-
es to beat period were higher for piano and that the number 
of concavity changes in one beat period was higher for voice. 
This may be related to timbre, but in order to investigate more 
thoroughly, it would be beneficial to create representative 
equations for complex tones produced by a variety of sources 
and examine whether there is a correlation between the ratio 
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of concavity changes to beat period and “softness” in tonal 
quality. It would be interesting to investigate whether timbres 
can be discerned by graphical characteristics.

It should be noted that there are limitations in the data of 
this study. The selection of harmonic frequencies included in 
complex tone equations was done manually. At higher fre-
quencies more distant from the fundamental frequency, it be-
comes harder to discern “peaks” by eye; thus, it is possible 
that some of the data taken were for frequencies other than 
harmonics, though these frequencies would be at lower am-
plitudes and therefore have less bearing on the shape of the 
complex tone graphs. For higher precision, one solution is to 
devise an algorithm to select “peaks” based on certain crite-
ria. Another solution is to calculate the first twelve harmonic 
frequencies for each fundamental frequency and then refer 
to these values when recording FFT (Fast Fourier Transform) 
data. However, the calculated frequencies may not necessar-
ily be “peaks”. In this study, we decided to record data for 
“peaks” because “peaks” are at relatively higher amplitudes 
than their neighboring frequencies and would therefore have 
more bearing on the shape of the resulting complex tone 
graphs. It would be helpful to repeat the process of collecting 
values several times and use the averages of these values 
to create equations and graphs. Imprecision was also intro-
duced by the FFT application rounding frequency values to 
integers and SPL values to one decimal point. A different FFT 
application or software could allow for more precision.

Based on hearing alone, we can conclude that timbre 
does affect perceived dissonance, with “softer” timbres pro-
ducing less dissonance than “harder” timbres for the same 
interval. This relationship could be corroborated by listening 
to the same interval played by many different instruments 
whose timbres would be qualified beforehand. This would re-
quire a system of classifying and describing timbres as well 
as many people to rate timbres and degrees of dissonance. 
This study could be carried out using the Internet to collect 
ratings from volunteers. Furthermore, intervals of two differ-
ent instruments (in which one instrument plays one note and 
another plays another note) could be examined, which would 
allow a more thorough understanding of the effect of timbre 
on dissonance. Understanding how timbre affects perceived 
dissonance can improve the creation of new music, allowing 
composers to refine the characters of their music with careful 
selection of instruments in consideration of how their timbres 
will interact. One interesting aspect is the consideration of 
timbre is computer sound synthesis, which can both replicate 
the sounds of real instruments and produce completely new 
sounds that are not found naturally. Computer-synthesized 
sounds, as often heard in contemporary pop music, are a col-
lection of more timbres to be explored. As a continuation of 
this study, we plan to study the graphs of complex tones of 
different sources in order to determine whether there is a cor-
relation between the ratio of concavity changes to beat period 
and “hardness” or “softness” in timbre.

In summary, the results of our study do not support Helm-
holtz’s theory of temporal dissonance. We did not find a clear 
relationship between perceived dissonance in a musical in-
terval and the number of beat frequencies between 10 and 
60 Hz produced by the component frequencies of the notes 
in the interval, the observed beat frequency of the graph for 
the interval, the number of concavity changes in the graph 
for the interval over the same time interval, or the ratio of 

concavity changes to the period of the observed beating for 
the equation of the interval. We concluded that timbre affects 
dissonance, and it appears that “softer” timbres create less 
dissonance than “harder” timbres. Our results suggest that 
the number of concavity changes over the same time interval, 
the number of concavity changes in one beat period, and the 
ratio of concavity changes to beat period may be correlated 
to timbre.

METHODS 

Creating equations for component pure tones and complex 
tones

Table 4. Shortened table of raw and manipulated data for C4 on 
piano. The full table contains data for thirteen frequencies, the first 
thirteen “peaks” in the FFT graph. Following the same structure, 
tables were created for the nine other piano notes used to create 
the nine intervals examined in this study.

We used a Fast Fourier Transform (FFT) application 
(Figure 1) on a smartphone (6) to record the notes from C4 
(frequency ≈ 261.626 Hz (8)) to C5 (frequency ≈ 523.251 Hz (8), 
one octave higher than C4) on the piano. The frequencies and 
amplitudes for the first thirteen “peaks” in the graph (Figure 
1) were recorded in tables to facilitate the creation of sine 
equations to represent the pure-tone sound waves at these 
frequencies. These peaks correspond to the fundamental 
frequency and twelve harmonics. Some imprecision is 
introduced because the application rounds the frequencies to 
integers and the loudness, or sound pressure levels, to one 
decimal point. Table 4, created in Google Sheets, displays 
the data recorded from the FFT graph (Figure 1) as well as 
amplitude and “trigonometric” frequency values that were 
calculated. To calculate the amplitude values, the equation

                     
was used, where L is the loudness in dBFS, A is the ampli-
tude, and A0 is the reference amplitude which, for the pur-
poses of this study, is arbitrarily assigned the value 0.01. The 
study is looking at the amplitudes proportional to one another, 
and the proportions will not be affected by the value of A0. 
The value 0.01 was chosen after testing an online graphing 
program (7) and determining that, since the frequency val-
ues are large, zooming in would be required to view individual 
cycles of the sine waves, and so having small amplitudes for 
the equations would make the graphs easier to look at. Alge-
braically, assigning a smaller value to A0 causes A to have a 
smaller value. “log” denotes the common logarithm in base 
10. The equation was manipulated to solve for A (each line of 
working is separated by a semi-colon).
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The function tool in Google Sheets was used to calcu-
late the amplitudes for each frequency. Since the frequen-
cies from the FFT application were given in Hz, they were 
converted to “trigonometric” frequencies, which represent the 
number of cycles in an interval of 2π rather than 1. This way, 
the value of t, the independent variable of the sine equations 
to be created, equals the number of 1/2π seconds elapsed 
rather than equaling the number of  seconds elapsed. An ex-
ample of one conversion is below:

.
The conversion of all frequency values was done with 

Google Sheets, yielding the values in the table. The frequen-
cies listed in the table are not in terms of π but have already 
been multiplied by π to fourteen decimal places.

The sine equations representing pure tones were also 
created in Google Sheets. Then, the pure tone component 
equations were added to create an equation representing 
the resultant complex tone. Physically, when waves travel in 
the same position or space, they interfere with one another, 
so that the effects of the waves on the particles they travel 
through are compounded. This is known as superposition and 
can be represented mathematically by addition. For example, 
consider a wave displacing a particle p 1 mm to the right. At 
the same instant, another wave is displacing particle p 0.5 
mm to the right. The effects of these two waves are added, 
so that the resulting displacement of particle p is 1.5 mm to 
the right.

Creating graphs of musical intervals
The graphs for the nine musical intervals from a minor 

second to an octave (Figure 2) were produced by graphing 
the sums of the complex tone equations for C4 and a second 
note (For example, a perfect fifth is C4 and G4). The horizon-
tal axis of the graphs shows time elapsed in seconds, while 
the vertical axis shows the sound pressure, or the additional 
pressure that a sound wave produces in propagating through 
a medium (9). To obtain the actual sound pressure values, 
each amplitude value must be multiplied by the actual refer-
ence amplitude (A0) and then by 100 to account for the arbi-
trarily assigned value of 0.01 to A0. Because they would all 
be multiplied by the same factor, their proportions to each 
other would stay the same. The curves would also have to 
be shifted upwards so that there are no negative values for 
sound pressure.

Control experiment
As a control experiment to determine the accuracy of the 

equations representing intervals produced by adding complex 
tone equations for individual notes, we recorded a C4 and 
C#4 played simultaneously on the piano with the FFT applica-
tion and created an equation following the method described 
above. The first fourteen rather than thirteen “peaks” were 
recorded; since two notes are being played, there are two 
sets of a fundamental frequency and harmonics, so an even 
number is more suitable. “Peaks” could not be clearly identi-
fied visually beyond the first fourteen, so we did not record 
more “peaks”, though this would have increased the accuracy 

of the resulting equation created. The equation was graphed 
with the same online graphing program (7) (Figure 3).

Finding the number of beat frequencies between 10 and 60 
Hz in a musical interval

To obtain the data in Table 1 of the number of beat 
frequencies between 10 and 60 Hz in a musical interval, 
we used Google Sheets to calculate the beat frequencies 
produced by all combinations of component frequencies in 
the two notes of an interval for all nine intervals examined. 
The equation for calculating beat frequency is

       .
We highlighted and counted the beat frequencies which were 
between 10 and 60 Hz and recorded the values.

Finding beat frequencies and periods for the graphs 
representative of musical intervals

To find approximate beat frequencies and periods for 
the graphs representative of musical intervals (Table 1), we 
visually estimated the number of full cycles over a certain 
time interval by examining the graphs in the online graphing 
program. If cycles were unclear, we adjusted the time interval 
until cycles became clear. We then calculated the beat 
frequencies in Hz with the equation 

             
in Google Sheets. The beat periods in seconds were 
calculated by taking the reciprocals of the beat frequencies 

             .

Finding the number of concavity changes in a graph 
representative of a musical interval and calculating the ratio 
of concavity changes to beat period

We calculated equations for the second derivatives of the 
equations representing musical intervals in Google Sheets 
using derivative rules. We then graphed these equations 
in the same online graphing program (7). We counted and 
recorded the number of horizontal axis crossings over 0 ≤ 
t ≤ 0.3 s for each graph. The number of horizontal axis 
crossings in a second derivative graph equals the number of 
concavity changes in the original graph representative of a 
musical interval, since the value of the second derivative at 
any point is the concavity of the original function at that point. 
We also counted and recorded the number of horizontal axis 
crossings over one beat period (0 ≤ t ≤ beat period) for all 
musical intervals. We calculated a ratio of concavity changes 
to beat period for each musical interval with the equation

. 
These data are recorded in Table 1.

The data processing (excluding plotting) described 
above was also carried out for the equation from the control 
experiment.

Comparing different timbres
To address the second part of the aim, “whether timbre 

has an effect on dissonance”, we recorded a human voice 
singing a C4 and C#4. The same procedure as above was 
followed. Video editing software (10) was used to overlay 
audio recordings of the C4 and C#4 notes so that they 
could be heard sounding simultaneously. The curves for C4 
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and C#4 by voice were added and the resulting curve was 
compared to the graph of the C4 and C#4 resultant for piano 
(Figure 4).
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