
4 DECEMBER 2019 | VOL 2 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

competency of a network other than test accuracy, which is
often heavily situational and can overrepresent functionality
due to overfitting (that is, when a neural network works only
on the specific training set or test set). As the field of machine
learning grows, it becomes more important to understand
the effects of training on neural networks and their weights -
numbers that influence the output of a neural network that are
crucial to their operation.

This investigation focuses on neural networks. At
its simplest, a neural network works very similarly to a
mathematical function, with weights modifying input values
multiplicatively and biases modifying them additively. One way
of “learning” new mappings from input to output is supervised
learning where the network is fed both an input output pair
which is known to be correct. For example, you could provide
an image of a cat as input and the classification “cat” as the
output. With this input and output the network calculates loss,
a measure of how inaccurate the network’s prediction was.
The network then uses an algorithm, to modify the weights
and biases to better map the input to the correct output. This
kind of basic neural network is often called a fully connected
neural network.

Convolutional Neural Networks (CNNs) are neural
networks which contain at least one, but usually more,
convolutional layers. Layers at their most basic are steps in a
neural network which data must pass through, usually being
modified in some way before being output to the next layer
or as an output. Convolutional layers in particular, are layers
which apply convolutions to an image. A convolution is an
image analysis technique in which a filter - an ordered set of
weights - is iterated over the input, modifying it to create a
new output. Due to convolutions being the core of this type of
neural network, these networks are often used to analyze and
make predictions based off of images.

A simple CNN was created using Python and then trained
with Cifar-10 (3), an image database used for machine
learning. The filters used in the convolutions were then
analyzed using techniques similar to those outlined during the
1989 Neural Information Processing Systems conference (4).
This analysis generated qualitative and quantitative data used
to compare the varying levels of training. My research aims
to contribute to an understanding of the effect of training on
weights by determining whether consistent and measurable
patterns appear in visualizations of weights at varying
degrees of training. To accomplish this goal, visualizations of
weights were analyzed to look for patterns at varying levels

INTRODUCTION
Neural network technology, and machine learning

more generally, is present throughout much of our modern
world, from self-driving cars to text recognition (1). Machine
intelligence is becoming a crucial part of our society, most
notably in healthcare, education, the automotive industry,
and general safety (2). Neural networks, machine learning
implementations which use systems of weights and biases
to make decisions, are often part of these intelligent systems.
Due to the integration of machine learning in highly important
fields of society, deficiencies in our understanding of its
function can often be devastating. If an automated vehicle
fails to notice and recognize an obstacle, it could result in
death, similarly if an automated doctor in the not-so-distant
future were to misdiagnose a patient it could be equally
fatal. Understanding the effect of training on components of
a neural network deepens our insight into how the weights
affect predictions of the neural networks. This deeper insight
could open up the possibility for new techniques of measuring

SUMMARY
Neural networks are used throughout modern society
to solve many problems commonly thought of as
impossible for computers. As their use becomes
more widespread, an issue of measurement arises.
In order to create metrics with which to measure
the ability of neural networks, new techniques
must be constantly developed. The purpose of this
research is to determine whether varying training
produces measurable and consistent patterns in the
visualizations and weights of Convolutional Neural
Networks. In order to carry out this investigation, a
convolutional neural network was designed and run
with varying levels of training to see if consistent,
accurate, and precise changes or patterns could be
observed. To determine if such a change or pattern
existed, the weights and filters were analyzed through
visualizations, both qualitatively and quantitatively.
Several patterns were discovered in the visualizations,
but they were inconsistent across layers and the
quantitative models were only consistent in specific
circumstances. This indicated that while training
introduced and strengthened patterns in the weights
and visualizations, the patterns observed may not be
consistent between all neural networks.

Emmett Fountain, Joe Rasmus
Williamston High School, Williamston, Michigan

The effect of varying training on neural network
weights and visualizations

Article

4 DECEMBER 2019 | VOL 2 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

of training. In the analysis, a pattern was found and termed
“softness”, it was tracked both as a quantitative variable
and as a qualitative variable. We predicted that quantifiable
patterns would be detected, but they would most likely not be
consistent.

RESULTS
The first qualitative trend noticed was a change in the

distribution of strong weights among the filters. When there
was little training, the weights were distributed with a random
spread. As training increased, clusters of weights began to
form. The distribution of weights across the filters changed
from a random spread with little training to a spread with

clusters of strong weights when there were higher training
levels (Figures 1 & 2). Two other visualizations were created to
analyze the weights. Both visualizations contained a number
of panels, each with an image which has had a unique filter
applied to it. The visualizations differed in the base images
that were used; one used an image of a bird taken from the
Cifar-10 dataset, while the other used an image of black and
white static noise. A prominent pattern in these visualizations
was the increasing prevalence of “soft” images when filters
are better trained, seen in both the images generated from
static and the bird images in both the first and second layer of
both of these image sets (Figures 3 & 4). Images which are
soft have pixels where close location corresponds with close

Figure 1. Weights of filters with little training are randomly
distributed. All 16 filters in layer 1, after 2,000 iterations. Each panel
is one of the filters of layer 1, the colors represent the value of the
weights with blue being low and red being high. The exact values of
the weights are not important in this situation because all we need
to see are the patterns in the intensity and sign. Note the prevalence
of intense weights throughout the filters, mixed seemingly randomly.

Figure 2. All 16 filters in layer 1, after 30,000 iterations. Weights
of filters with more training form clusters Each panel is one of the
filters of layer 1, the colors represent the value of the weights with
blue being low and red being high. The exact values of the weights
are not important in this situation because all we need to see are
the patterns in the intensity and sign. There are far fewer intense
weights, which appear mostly in clusters with a similar sign.

Figure 3. Images generated by applying all 16 filters in layer 1,
after 2,000 iterations, to an image in the “bird” class of Cifar-10.
Applying filters with little training to sample images generates images
with little softness. Each panel was generated using a different filter
from layer 1. Very few filters produced images that are soft (soft
images highlighted in red).

Figure 4. Images generated by applying all 16 filters in layer 1,
after 30,000 iterations, to an image in the “bird” class of Cifar-10.
Applying filters with more training to sample images generates
images with greater softness. Each panel was generated using a
different filter from layer 1. Far more filters produced images that are
soft compared to the filters that were trained to 30,000 iterations (soft
images highlighted in red).

4 DECEMBER 2019 | VOL 2 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

values, visually this means there are very few edges and little
pixelation. When trained to 2,000 iterations, few of the 16 filters
in layer 1 generated images which appeared soft. However,
when trained to 30,000 iterations far more of the images
were soft. This trend also occurred to some extent with the
images generated by applying filters to static noise and when
using filters from layer two (data not shown). However, the
specific number of soft images varied per session even when
the number of iterations remains constant. In two separate
sessions filters were trained with 30,000 iterations but the
filters of one session produced far more soft images than the
other despite the same amount of training (Figures 4 & 5).

A graph was generated that showed the accuracy during
training (Figure 6). This helped show the training trend for the
model which gives an idea of what kind of numerical models
might be plausible while analyzing the quantitative data. We

observed that the rate of increase in accuracy decreased at
higher training levels suggesting that a pattern would probably
not be linear.

Almost all of the data had very low R and R-squared
(R2) values, meaning that not many of the linear regression
equations fit the data very well. The notable exceptions were
power functions from the second layer (Figure 7). The data
generated from the bird image had an R2 value of about
0.9220 and the data generated from the static noise image
had an R2 value of about 0.8996. Other than these two, all of
the R2 values were below 0.8. Power functions for layer two

Figure 5. Images generated by applying all 16 filters in layer 1,
after 30,000 iterations, to an image in the “bird” class of Cifar-10.
Each panel was generated using a different filter from layer 1. The
amount of softness is highly variable even with the same amount of
training. While there are still more soft images then in Figure 3 with
2,000 iterations, there are noticeably less than in Figure 4, which had
the same amount of training and was just a different session.

Figure 6. Test-based accuracy during training, reported at
intervals of 10 iterations. Test based accuracy suggests a non-
linear model. This figure includes the least squares regression line
in red as a reference.

Figure 7. Bar graph showing the values of R2 for a line
comparing softness to number of iterations. The graph includes
the R2 values for all combinations of variables, that being layer,
model, and image. In layer 2, the power model has a very high R2
value for both images. A high R2 value for the power model in layer
2 suggests that this model fits the data well.

Figure 8. Residual graph showing the residuals for a power
model of softness scores. Softness scores were calculated from
the bird images generated from layer 2 as described in the methods
section. There is not a strong curvature, which indicates that the
power model would remain somewhat consistent if the model were
extended to higher and lower batch sizes.

4 DECEMBER 2019 | VOL 2 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

of the bird and static noise data, also had the lowest p-values
for the two-tailed linear regression t-test with 1.05x10-5 and
2.90x10-5 respectively. However, these two were not the only
regression equations that were significant at α = 0.05. All
of the first layer data had significant p-values, but very low
R2 values; however, from layer two, only the power function
and the exponential model generated from static noise were
significant at α = 0.05.

The residual graphs provided additional information as
to whether the regression equations held up over time, an
example of which can be found below (Figure 8). All of the
graphs had some degree of curve, but several demonstrated
more random scatter than others. The most random graphs
were from layer two of the static noise straightened as a
power function, both layer one and two of the bird image
unstraightened, and layer one of the bird image straightened
as a power function. The rest showed much more severe
curving, which suggested that the pattern falls off as the data
is extended.

DISCUSSION
We observed some consistent patterns in the weights

and visualizations which were very localized or inconsistent.
There is some evidence to suggest that consistent patterns
are present, but evidence also suggests that these patterns
may not be consistent across neural network models.
The existence of consistent patterns in the weights was
supported by qualitative evidence. We observed patterns
in the visualizations of the weights through the clustering of
strong weights, as well as the increasing number of filters
that produce soft images (Figures 1 & 2 and 3 & 4). The
existence of patterns was further supported by the quantitative
evidence, which demonstrates some consistency and rigor
to these trends. In layer 2 of the data generated from static
noise, there exists an accurate power function that shows a
strong relationship between training and softness. A high R2
value suggested that there was a strong correlation between
the scores generated by the image and the number of
iterations (Figure 7). The low p-value tells us that there was a
significant linear correlation in the data when straightened as
a power function. Finally, the random scatter of the residual
graph showed that the power function is relatively consistent
even as the pattern is extended. (Figure 8)

However, evidence suggests that the patterns might not
be present in other neural network models or even when
testing separate sessions. For example, a power function
seemed to be the best fit for the data in layer 2, having higher
R2 values and lower p-values than any other model for both
images. The issue is that this same model was not consistent
for layer 1, which is simply a different level of abstraction
and doesn’t have any fundamental differences from layer 2.
Layer 1 has different models for each image which presents
the problem that the patterns would be inconsistent as layers
vary tremendously across models. The patterns would most
likely be inconsistent with different test images and when

using different neural networks. Along with this quantitative
inconsistency, the qualitative trends were inconsistent
across sessions (Figures 4 & 5). Therefore, more advanced
quantitative research may prove unfruitful.

Overall, there were consistent patterns in Neural Network
weights and visualizations within a specific model, but those
patterns may not extend much beyond that specific model. In
order for the findings of this research to have an impact on
applied machine learning, more research would be needed to
widen the scope of these findings.
While we conducted this research to the best of our ability,
we could take several steps to improve the validity of this
research or to further it. One such step would be to use
computers that can better handle machine learning. It would
have been highly informative to see how the data extended
beyond this point, and it might have prompted some new
insights. Other steps that could have been taken to generate
a more representative sample and outline stronger trends
include increasing the sample size, running more sessions,
and applying the weights to more images. If future research
was to be conducted it would be important to apply more
advanced image analysis techniques and statistical analyses
so that trends can be better quantified and new trends might
be discovered.

METHODS
In order to test for patterns, a Convolutional Neural

Network (CNN) was used; as it provides an acceptable level
of complexity but is also simple enough that its weights
can be easily accessed and analyzed. The CNN was built
in Python with the TensorFlow library (5); the CNN had two
convolutional layers and two fully connected layers. The batch
size is variable, but due to hardware limitations a batch size of
50 was employed to generate the data. Cifar-10 (4) was used
to generate the data, as it has a relatively large sample of
images, but a manageable number of 10 classes. A function
saved the convolutional filters as NumPy array files once the
set number of training loop iterations had been completed.

A separate Python program was designed to view the
filters in a variety of fashions. This program would display
the filters as grids of colors ranging between blue and red
depending on the value of the weight for each grid square.
The program could also apply the filters to a sample image,
in order to see how the filters affect the images they are
applied to. The filters and images generated by the filters
were grouped by which session and convolutional layer they
were from. There were 5 different levels of training: 1, 2,000,
10,000, 30,000, and 50,000 iterations. The sessions with
only one iteration were treated as baselines since they were
essentially random as they had no time to train. Then, small,
moderately small, moderately large, and large numbers of
iterations were chosen so that the differences in visualizations
at noticeably different training levels could be compared. Due
to time and computing restraints, more sessions with fewer
iterations were run than those with many iterations. Three

4 DECEMBER 2019 | VOL 2 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

sessions with 1 and 2,000 iterations were run, two sessions of
10,000 and 30,000 iterations were run, and only one session
of 50,000 iterations was run.

In order to analyze the change in the filters, three kinds
of images were qualitatively analyzed for each filter. This
qualitative analysis was meant mostly as a heuristic to find
possible patterns and support the quantitative analysis.
The first of these image types was the red and blue color
interpretation of the filters. The next image type was
generated when the filters were applied to a 32 x 32 image
with randomized black and white pixels. The original black and
white image was generated as a 32 x 32 matrix with random
ones and zeros, which was then transferred to an image with
ones representing white pixels and zeros representing black
pixels. The final image type was generated by applying the
filter to a sample image from Cifar-10. For this sample image,
a simple bird image was chosen to further reveal patterns not
identified by applying the black and white image. The images
of the same number of iterations and that shared a layer
were analyzed together. The images were originally analyzed
qualitatively and note was taken of any recurring patterns
or features in a layer. The number of “soft” images for each
group was also recorded. To quantify image trends, a python
program was developed to objectively measure “softness” of
an image.

The program first normalizes the images so that the value
of each pixel is a floating point between 0 and 1. Once the
images are normalized, a 3 x 3 filter is repeatedly applied
to each image. This filter computes the standard deviation
in that 3 x 3 area and returns it to the location in a matrix
where the sample 3 x 3 area was taken. The standard
deviations of each image were then averaged for each image,
representing a score for the image which should theoretically
be lower for softer images. After this score was computed,
the scores for each layer were summed to give a total score
for the layer. These scores were paired with their respective
number of training iterations allowing the scores of each
layer to be analyzed as a function of training iterations. Using
these scores and their corresponding training iterations,
statistics were generated in order to determine whether
there was a relationship between training iterations and the
softness score. A python program was used to generate a
least squares regression line for the relationship between
scores and iterations, R, the p-value for a two-tailed linear
regression t-test with a null hypothesis of zero slope, and
graphs of the residuals (Figure 8). As the accuracy graphs
were clearly curved, the data was straightened to conform to
exponential and power function models. Straightening, also
called re-expressing, is a process which linearizes non-linear
data, which serves many purposes. The same calculations
were performed on both of the straightened data sets and the
unstraightened data.

Linear regression equations can be used to describe the
straightened data and as such different models for a set of data
can be compared. Linear data allows for a linear regression

t-test to be performed to statistically determine whether the
data is linear and thus fits the model which it was straightened
for. In general, straightening works by determining which
model the data follows and applying the inverse of that to the
data. This effectively “undoes” the original function leaving the
data as a set of linear points. Curves can often be described
by one of two models; exponential, and power models. As
such, in order to determine which model described the data
curve, the data was straightened as if it was one of these.
Several tests were run on the resulting, now linear, data to
see which model it fit best.

Received: May 29, 2019
Accepted: November 26, 2019
Published: December 4, 2019

REFERENCES
1.	 Bojarski, Mariusz, et al. “End to End Learning for Self-

Driving Cars.” arXiv.org ArXiv:1604.07316 [Cs], Apr. 2016.,
arxiv.org/abs/1604.07316.

2.	 Amato, Filippo, et al. “Artificial Neural Networks in Medical
Diagnosis.” Journal of Applied Biomedicine, vol. 11, no.
2, ScienceDirect, Jan. 2013, pp. 47–58., doi:10.2478/
v10136-012-0031-x.

3.	 Krizhevsky, Alex. “Learning Multiple Layers of Features
from Tiny Images” cs.toronto.edu, April 8 2009, ch. 3,
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

4.	 Wejchert, Jakub and Gerald Tesauro. “Neural Network
Visualization.” Advances in Neural Information Processing
Systems 2 (NIPS 1989), Morgan-Kaufmann, 1990, pp. 9.
papers.nips.cc/paper/286-neural-network-visualization.
pdf.

5.	 Abadi, Martín, et al.. “TensorFlow: Large-scale machine
learning on heterogeneous systems”, tensorflow.org, Nov
9 2015, static.googleusercontent.com/media/research.
google.com/en//pubs/archive/45166.pdf.

Copyright: © 2019 Fountain and Rasmus. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

