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of the 17th century. On the margin of a copy of the ancient 
Greek book Arithmetica, he conjectured that the Diophantine 
equation xn + yn = zn has integer solutions only if n is less 
than or equal to 2 (3). This statement came to be known as 
Fermat’s last theorem. For example, Fermat’s last theorem 
states that the Diophantine equations x3 + y3 = z3 or x4 + y4 = 
z4 do not have any integral solutions. This conjecture turned 
out to be extremely difficult to prove and this proof eluded 
mathematicians for centuries. This conjecture was finally 
proven in 1995 in a 129-page paper by Sir Andrew Wiles (4). 
Ramanujan, the famous Indian mathematician, contributed 
to several fields of mathematics including number theory, 
continued fractions, mathematical analysis and infinite 
series (5,6). His works continue to be studied and analyzed 
by mathematicians even a century after he died. Many 
mathematicians including Ramanujan devised formulas to 
find numbers satisfying a3 + b3 + c3 = d3  (7,8). There is no 
known formula that can find all the solutions of the above 
equation (9). 
	 In the famous exchange when G. H. Hardy came to visit 
Ramanujan in the hospital, Hardy said that the cab he came 
to meet him in was numbered 1729. Hardy remarked it was an 
extremely dull number (10). Ramanujan however, answered 
that it was a very interesting number. Ramanujan said that 
this was the smallest integer which could be expressed as the 
sum of two cubes in two different ways:

1729 = 13 + 123

1729 = 93 + 103

Numbers of this kind came to be known as taxicab numbers 
or Hardy-Ramanujan numbers (11).  
	 In this paper we have varied the equation in Fermat’s last 
theorem into Diophantine equations of the form a3 + b3 + c3 = 
d3, a3 + b3 + c3 = d2  and a3 + b3 + c3 = d4 and found integral 
solutions for them keeping a, b and c to less than 10,000. 
Using a computer program that we wrote, we found many sets 
of integers satisfying the above three equations by brute force 
– putting in each number one by one and only keeping the 
sets that satisfy the equations. After we found all the solutions 
under 10,000, we analyzed the density of solutions and how it 
varied as the numbers got bigger. 
	 We wanted to find out how many solutions Ramanujan’s 
formula could find, and we wanted to compare the density of 
solutions got by his formula to our own calculated density. 

An Analysis of the Density and Patterns of the 
Solutions of Diophantine Equations of the Third Power

SUMMARY
According to Fermat’s last theorem, xn + yn = zn has no 
solutions if n > 2. We modified Fermat’s equation into 
the Diophantine equations a3 + b3 + c3 = d3,  a3 + b3 + 
c3 = d2  and a3 + b3 + c3 = d4 and found their solutions. 
We analyzed how the density of solutions varied as 
the numbers got bigger. Ramanujan had devised a 
formula to find numbers satisfying a3 + b3 + c3 = d3, we 
compared the density of solutions with those obtained 
by his formula. We also found perfect cubes, squares 
or fourth power solutions that could be expressed 
in different ways as a sum of three cubes. We called 
them perfect power taxicab numbers. Our hypothesis 
was that there are many solutions for our equations, 
and as the inputs become bigger, their density will 
increase linearly with minor fluctuations. We thought 
that most perfect power taxicab numbers would have 
a frequency (number of ways it can be expressed 
as a sum of three cubes) of two and the maximum 
frequency would be around 10. We hypothesized that 
Ramanujan’s formula would give around half of the 
solutions, and the density of solutions will increase 
as the numbers become large. We concluded that the 
density distribution of two equations increases as the 
numbers become bigger. However, the third equation 
had a stagnant density. Ramanujan’s formula found 
many numbers at the start but was unable to reach a 
high density. One perfect cube taxicab number had a 
frequency of 42 whereas the majority had a frequency 
of 2 or 3.  

INTRODUCTION
	 Since the dawn of civilization, we have been obsessed 
with finding patterns in the world around us. Our ancestors 
created mathematics to solve daily problems but were 
fascinated to find never-ending patterns in numbers. The 
entire branch of number theory is focused on finding 
interesting patterns in integers.  
	 Diophantine equations are polynomial equations with 
more than one variable in which we seek only integral 
solutions. An exponential Diophantine equation is an equation 
with exponents on the variables (1). Pythagoras’s theorem 
states that the lengths of the sides of a right-angle triangle 
satisfy the Diophantine equation b2+ p2 = h2. We know that 
this equation has infinite solutions (2).
	 Pierre de Fermat was one of the greatest number theorists 
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To accomplish this, we made a computer program to find the 
solutions of a3 + b3 + c3 = d3 using his formula and compared 
the density of solutions of those obtained by his formula with 
those we found. 
	 In this paper, we generalized Hardy-Ramanujan’s taxicab 
numbers to a perfect power able to express itself as a sum 
of three cubes in different ways. For example, the number 
1,000,000 is a perfect cube and can be expressed in two 
ways as a sum of three cubes:

1,000,000 = 1003 = 853 + 703 + 353

1,000,000 = 1003 = 883 + 683 + 163

So, we say that 1,000,000 is a perfect cube taxicab number 
and has a frequency of 2.
	 We found perfect square, perfect cube and perfect 
fourth power taxicab numbers keeping a, b and c to less than 
10,000.
	 Our perfect power taxicab numbers are different from 
Ramanujan’s taxicab numbers in the way that our numbers 
are the sum of three and not two cubes and the result itself is 
a perfect cube, perfect square or perfect fourth power rather 
than any integer as in Ramanujan’s case. We found many 
perfect cubes, square and fourth power taxicab numbers 
according to the equation. We analyzed and compared the 
frequency of perfect power taxicab numbers according to the 
number of times they could be expressed in different ways. 
	 Our hypothesis was that there are many solutions for 
our equations, and as the inputs become bigger, their density 
will increase linearly with minor fluctuations. We thought that 
most perfect power taxicab numbers would have a frequency 
of two and the maximum frequency would be around ten. We 
hypothesized that Ramanujan’s formula would give around 
half of the solutions, and the density of solutions will increase 
as the numbers become large.

RESULTS
	 We analyzed the solutions of the three equations a3 + b3 
+ c3 = d3,  a3 + b3 + c3 = d2  and a3 + b3 + c3 = d4 and compared 
their densities. 
	 From our data we found interesting patterns in all the 
three equations. The number of solutions of the equation a3 
+ b3 + c3 = d3 in which all a, b and c are less than or equal to 
10,000 is 65,085. Throughout our analysis, we assumed that 
a ≥ b and c. Therefore, we used a (the largest of the three 
inputs) as the basis of our density analysis. We found that the 
number of solutions of a3 + b3 + c3 = d2 for a, b and c less than 
or equal to 10,000 was 266,517 and that of the equation a3 + 
b3 + c3 = d4 for a, b, and c less than or equal to 10,000 was just 
987. 

Density of solutions for a3 + b3 + c3 = d3 (Cubic equation)
	 The total number of solutions for a, b, and c below or 
equal to 10,000 were 65,085. The first solution was

53 + 43 + 33 = 63 = 216,

and the last solution in the set of numbers that we considered 
was

99993 + 96963 + 94943 = 140393 = 2,766,995,941,319.
	 We used our data to analyze how the density of solutions 
to this equation varies as the input numbers (a, b, and c) 
become bigger. To visualize the density of solutions, we 
looked at the solutions in two different ways.  We considered 
the number of solutions for every 100 multiples of the largest 
of a, b, and c in our equation. In our analysis we always took 
a ≥ b and c. For example, between a = 0 and a = 100, there 
were 98 solutions. Between a = 100 to a = 200, there were 
183 solutions, and so on (Figure 1a). We also analyzed how 
the number of solutions per number of combinations of a, b 
and c varies per 100 multiples of a (Figure 1b).
	 We could see that the number of solutions per hundred 
values of a (density of solutions) rose quite steeply at first 
and then the rise became more gradual (Figure 1a). As we 
approached a = 10,000, the density reached more than eight 
hundred solutions for every 100 values of a. There were some 
minor fluctuations, but the overall trend was that of a rapid 
increase in the beginning and a slower increase later. The 
maximum number of solutions was found between a = 9000 
and a = 9100. This range has 902 solutions. The minimum 
number of solutions was between a = 0 and a = 100: 98 
solutions (Figure 1a). 
	 As a, b and c increased the total number of solutions 
per combinations of a, b and c decreased rapidly (Figure 
1b). In a sense total number of solutions per combinations 

Figure 1: Solution density for the cubic Diophantine equation. A) 
Number of solutions per hundred numbers of a for the equation a3 
+ b3 + c3 = d3. The maximum number of solutions is found between 
a = 9000 and a = 9100. This range has 902 solutions. The minimum 
number of solutions is between a = 0 and a = 100: 98 solutions. B) 
The number of solutions per number of combinations of a, b and c vs 
values of a with bin size of 100 ( a ≥ b and c).
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of the inputs (Figure 1b) is a better measure of the density 
compared to looking at just the largest input (Figure 1a). The 
latter only focuses on the largest variable a. It does not take 
into account the fact that as a increases, the number of b and 
c values that can be tried also increase. However, Figure 1b 
normalizes the density by finding the total number of solutions 
in any given range of a divided by number of combinations of 
a, b and c that will be tried in that range of a.

Density of solutions for a3 + b3 + c3 = d2 (Square or 
quadratic equation)
	 The total number of solutions below ten thousand values 
of a was 266,517. The first solution was

33 + 23 + 13 = 62 = 36,
and the last solution in our data was 

99993 + 99453 + 63903 = 14980682 = 2,244,207,732,624.
	 We used our data to analyze how the density of solutions 
to this equation varied as the input numbers (a, b and c) 
become bigger. We considered the number of solutions for 
every 100 multiples of the largest of a, b and c in our equation 
(Figure 2a). In our analysis we always took a ≥ b and c. The 
minimum density in the range of numbers that we considered 

was between a = 0 to a = 100, which was 214. The maximum 
density was between a = 9,800 to a = 9,900, which was 4,078. 
From the plot we concluded that as the value of a increased, 
the density of solutions also steadily increased. 
	 We also analyzed how the number of solutions per 
combinations of a, b and c varied per 100 multiples of a 
(Figure 2b). The number of solutions per combinations of a, 
b and c dropped quite rapidly at first and then flattened out. 

Density of solutions for a3 + b3 + c3 = d4 (4th power equation 
or quartic equation)
	 The total number of solutions of this equation within the 
first 10,000 values of a, b and c is only 987. The first solution 
was

33 + 33 + 33 = 34 = 81
and the last solution within the numbers that we considered 
was

99863 + 45443 + 30063 = 10284 = 1,116,792,422,656
	 The total number of solutions decreased from the 
quadratic to cubic to quartic (266517 vs 65085 to 987), and 
that was expected because the total count of numbers whose 
square is less than 3×1012(a, 10¹² values of b and 10¹² values 
of c) is much more than the total number of cubes in the 
range which, in turn, is much greater than the total number of 
powers of four in the range.

Figure 3: Solution density for the quartic Diophantine equation. A) 
Number of solutions per hundred numbers of a for the equation a3 + 
b3 + c3 = d4. The maximum solution density is 15, which is achieved 
by five ranges of a. The minimum frequency density was between a 
= 7100 and a = 7200, which is four. This equation’s solution density 
shows a lot of local fluctuations but has a constant “flat” trend. B). 
The number of solutions per number of combinations of a, b and c vs 
values of a with bin size of 100.  

Figure 2: Solution density for the square Diophantine equation. A) 
Number of solutions per hundred numbers of a for the equation a3 
+ b3 + c3 = d2. The minimum density in the range of numbers that 
we considered was between a = 0 to a = 100, which was 214. The 
maximum density was between a = 9,800 to a = 9,900, which was 
4,078. B) The number of solutions per number of combinations of a, 
b and c vs values of a with bin size of 100.  
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	 We analyzed the solution density of this equation for the 
first 10,000 values of a (assume a ≥ b and c) (Figure 3a). 
We also considered how the number of solutions per number 
of combinations of a, b and c varied per 100 multiples of a 
(Figure 3b).
	 We inferred (Figure 3a) that this equation’s solution 
density was unlike that of the previous two equations (the 
square and the cubic). Here the maximum solution density 
was 15, which was achieved by five ranges of a. The minimum 
density was between a = 7100 and a = 7200, which was 
four. This equation’s solution density showed a lot of local 
fluctuations but had a constant “flat” trend. The first range 
a = 0 to a = 100 had the highest density of 15, and this was 
repeated 4 times. This curve was constrained within the 
range 4-15 with large fluctuations. In the square and cubic 
results (Figures 1a and 2a), the value of the density went up 
to thousands of numbers while the highest density for the 
quartic equation only went up to 15. 
	 When we analyzed how the number of solutions per 
number of combinations of a, b and c varied per 100 multiples 
of a we saw that this shows a different character than the 
corresponding solutions of the square and cubic equation 
(Figure 3b). The fall was faster and the flattening happened 
later compared to the square and the cubic equation. The 
density also showed significant local variations.
	 A very effective way to compare the three equations was 
to fit some simple polynomial curves on the data and compare 
these curves. We found that the following three curves fit into 
the data of number of solutions per 100 values of a (Figures 
1a, 2a and 3a):

Cubic equation (Figure 1a): 
-6.312×10-6 x2 + 0.1199x + 258.9

Square equation (Figure 2a): 
-2.145×10-5 x2 + 0.5471x + 627.6  
4th power equation (Figure 3a): 

1.132×10-7 x2 - 0.001511x + 13.35   
	
	 When we compare these three polynomials by plotting 
them and by algebraic analysis, we saw that the fourth power 
polynomial was almost flat. The third power curve had a more 
gradual slope than the 2nd power curve and did not rise as 
high. 
	 The following curves fit the data of the number of solutions 
per combinations of a, b and c plotted against values of a with 
bin size of 100 (Figures 1b, 2b and 3b)

Cubic equation (Figure 1b):   
3.365 ×10-8  x2 -  0.0005524 x  -  4.393                            

Square equation (Figure 2b):   
3.084 ×10-8 x2 -  0.0005014 x - 3.965             

4th power  equation  (Figure 3b):     
4.69 ×10-8 x2 -  0.0007486 x - 5.683     

                                                          
	 When we compared these polynomials we saw that 
the fourth power curve fell much more rapidly compared to 
the other curves and reached a much lower point than the 
other two curves. The flattening of this curve happened 
later compared to the cubic equation and square equation 
curves. The cubic curve and the square equation curve had 
similar slopes and shape but the cubic curve was lower than 
the square equation curve but still much higher than the 4th 
power curve.

Perfect Power Taxicab numbers
	 We defined perfect power taxicab numbers as perfect 
cubes, squares or fourth powers satisfying the Diophantine 
equations outlined above, which can be expressed as a sum 
of three cubes in different ways. Surprisingly we found many 
perfect power taxicab numbers for all the three Diophantine 
equations that we considered.
	 We found perfect cube taxicab numbers i.e. multiple a, b 
and c for the same d satisfying a3 + b3 + c3 = d3  and compared 
the count of numbers for each frequency (Figure 4). We 

Figure 5: 42 ways in which a perfect cube could be expressed as a 
sum of three different cubes.

Figure 4: Histogram which compares the count of numbers with 
different frequencies for the equation a3 + b3 + c3 = d3. The count 
of numbers with frequency of 3 is greater than count of numbers 
with frequency of 2. The maximum frequency is 42 for perfect cube 
taxicab numbers
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define the frequency of a taxicab number for the equations we 
considered as the number of different ways a perfect cube, 
square or fourth power taxicab number is expressed as a sum 
of three cubes. For example: 

1,000,000 = 1003 = 853 + 703 + 353

1,000,000 = 1003 = 883 + 683 + 163

Therefore, we say that 1,000,000 is a perfect cube taxicab 
number and has a frequency of 2. There are 1256 taxicab 
numbers which have a frequency of 2 for the equation a3 + b3 
+ c3 = d3. Thus, we say that the count of numbers that have 
the frequency of 2 is 1256.
	 Our calculations allowed us to find all perfect cube 
taxicab numbers up to 10,0003 (d3 ≤ 10,0003). It may seem 
that our analysis should have found all perfect cube taxicab 
numbers up to  3 x (10,000)3 since a ranges from 1 to 10,000 
and b and c range from 0 to a, but that is not the case. There 
will be taxicab numbers less than 3 x (10,000)3 but greater 
than 10,0003 which have a > 10,000 but b and c < 10,000. 
On the other hand, we can prove that all taxicab numbers 
up to 10,0003 have been covered in our analysis. This can 
be seen from the fact that the maximum value of a is 10,000 
and the minimum value of b and c are 0. In this limiting case 
the equation becomes 10,0003 + 03 + 03 = 10,0003. Thus, our 
analysis of a, b and c numbers where each of them is less 
than or equal to 10,000 does cover all perfect cube taxicab 
numbers up to 10,0003 but does not cover all perfect cube 
taxicab numbers > 10,0003 as some of them could have a 
> 10,000 but b and c < 10,000. Therefore, although we had 
found some frequencies of taxicab numbers d3 > 1012 in our 
data, we did not consider it in our analysis as this data is 
incomplete for the above-mentioned reasons.
	 In total, there were 8276 different perfect cube taxicab 
numbers up to a = 10,000. Most of these numbers had a 
frequency of 2 and 3 but we could find many numbers whose 

frequency in this data went beyond twenty (Figure 4). The 
maximum frequency for a perfect cube taxicab number was 
42. So, there were 42 ways in which a perfect cube could be 
expressed as a sum of three different cubes (Figure 5). We 
had expected that the count of numbers with frequency of 2 
will dominate but we were surprised to see that the count of 
numbers with frequency of 3 was greater than the count of 
numbers with frequency of 2.
	 We then compared the count of numbers with different 
frequencies for the equation a3 + b3 + c3 = d2 (Figure 6). 
These are perfect square taxicab numbers i.e. multiple a, b 
and c for same d satisfying the equation. As described for 
the cubic Diophantine equation above, our data consists of all 
taxicab numbers such that d2 ≤ 10,0003 (i.e. d < 106). 
	 We inferred that although the number of perfect square 
taxicab numbers (39,153) is far greater than that of the perfect 
cube taxicab numbers (8276), the frequency is limited to a 
certain range (Figure 4, Figure 6). The maximum frequency 
is limited to 29 for perfect square taxicab numbers whereas 
the perfect cube taxicab numbers peaked at a frequency of 
42.  Another difference from the cubic case was that for the 
square equation, the count of numbers with frequency of 2 far 
exceeds the count with the frequency of 3.
	 We analyzed the frequency of perfect fourth power 
taxicab numbers, i.e. multiple a, b and c for same d satisfying 
a3 + b3 + c3 = d4 (Figure 7). We compared the count of 
numbers with different frequencies. As described in the cubic 
Diophantine equation above, we found all taxicab numbers 

Figure 7: Histogram which compares the count of numbers with 
different frequencies for the equation a3 + b3 + c3 = d4. The maximum 
frequency of perfect fourth power taxicab numbers in the first 10,000 
numbers was 18.

Figure 6: Histogram which compares the count of numbers with 
different frequencies for the equation a3 + b3 + c3 = d2. The maximum 
frequency is limited to 29 for perfect square taxicab numbers.
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such that d4 = 10,0003 (i.e. d = 103). 
	 We could see that there are very few fourth power taxicab 
numbers in the first ten thousand numbers of a (assuming a 
≥ b, c) (Figure 7). However, we saw that out of 987 solutions 
of this equation in the range of numbers we considered, there 
were 194 different perfect fourth power taxicab numbers.  
Therefore, the ratio of taxicab numbers to total solutions 
in the 4th power equation is much greater than the ratio in 
the square equation and the cubic equation. The maximum 
frequency of perfect fourth power taxicab numbers in the first 
10,000 numbers was 18.

Ramanujan’s formula for Diophantine equations of the 
third power
	 Ramanujan proposed a formula to find solutions of a3 + 
b3 + c3 = d3  (7,8) which is as follows:

(3x2 + 5xy - 5y2)3 + (4x2 - 4xy + 6y2)3 + (5x2 - 5xy - 3y2)3 = 
(6x2 - 4xy + 4y2)3 

Here (3x2 + 5xy - 5y2), ((4x2 - 4xy + 6y2) and (5x2 - 5xy - 3y2) 
are our a, b and c, where the largest number for a specific x, 
y is a, second largest number is b and the smallest is c. To 
generate the solutions obtained by the above equation, we 
inserted values of x and y such that a would range from 0 to 
10,000. Here both x and y can be negative but we selected 
only those solutions for which a, b, c and d were positive. We 
plotted the density of solutions of a3 + b3 + c3 = d3 generated 
by Ramanujan’s formula and compared this data with our 
own data for a less than or equal to 10,000 (Figure 8). For 
this analysis we considered the number of solutions per 
hundred numbers of a and compared the density obtained 
from Ramanujan’s formula to the density obtained by our 
program. A complete density analysis would also require us 
to divide the number of solutions in a given interval by the 
number of combinations of a, b and c. However, our main aim 
in this analysis was to compare Ramanujan’s formula with the 
number of solutions found by brute force and that comparison 

would be equally relevant if we were just to consider the 
number of solutions per 100 values of a.
	 When a was small, the gap between the density of 
solutions found by Ramanujan’s formula and our program was 
about 3 times: 38 vs 98 in the first 100. However, the density of 
solutions in the two cases quickly diverged. With the increase 
in a, the density of solutions of Ramanujan’s formula was 
unable to generate enough numbers and the density became 
flat and the gap between the two densities kept increasing. 
The total number of solutions found by Ramanujan’s formula 
in the first 10,000 values of a were 1195. This was very 
small compared the numbers found by brute force: 65,085. 
Therefore, we concluded that while Ramanujan’s formula 
does generate numbers satisfying the equation, it fails to 
generate enough density or count compared to the method of 
brute force.

DISCUSSION
	 In this paper we found solutions of following three 
Diophantine equations of the third power by brute force for 
the first ten thousand numbers of a. 

a3 + b3 + c3 = d2    (quadratic equation or square equation)
a3 + b3 + c3 = d3    (cubic equation)
a3 + b3 + c3 = d4    (quartic equation or 4th power equation)

Here a is the largest number on the left-hand side of all the 
three Diophantine equations. We compiled all the solutions for 
the three equations into graphs showing density of solutions 
per hundred numbers of a and compared them. We found 
that while the quadratic equation and cubic equation showed 
a similar trend in density as the numbers became large (they 
rose rapidly at first and later the rise slowed down), the quartic 
equation’s density was constant and constrained. The quartic 
equation’s density at any point was much less than the density 
of the quadratic and cubic equations at that point.
	 We also compared the total number of solutions per 
combinations of a, b and c as a increased from 1 to 10,000. 
This graph fell rapidly at first in all the three cases and then 
stabilized. The fall was much larger for the fourth power 
equation compared to the cubic and quadratic equation.
	 We also found that the quadratic equation produced the 
greatest number of solutions followed by the cubic equation, 
whereas the quartic equation produced less than thousand 
solutions in our data.
	 We found numbers which we called perfect power 
taxicab numbers that are perfect squares, cubes or 4th 

powers, according to the equation, that could be expressed 
as a sum of three cubes in different ways. We compiled the 
perfect power taxicab numbers into histograms to find the 
count of numbers corresponding to various frequencies. We 
found that the number of perfect square taxicab numbers 
was much more than the number of perfect cube taxicab 
numbers. The number of perfect 4th power taxicab numbers 
was the least. Surprisingly, one perfect cube taxicab number 

Figure 8: Comparison of the density of solutions of a3 + b3 + c3 = 
d3 got by Ramanujan’s formula and our computer program (brute 
force method). Ramanujan’s formula could only find a fraction of the 
solutions that we found by brute force, and as the numbers grew 
larger, the gap became bigger.
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(970,299,000,000) could be expressed as the sum of three 
cubes in 42 different ways. In the cubic equation we were 
surprised to find that the count of numbers with frequency of 
3 was more than the count of numbers with frequency of 2.
	 Finally, we generated solutions of the cubic equation 
given by Ramanujan’s formula and compared its density with 
ours. We found that Ramanujan’s formula could not match the 
density or count of solutions found by us using brute force.
	 When we compared our results with our hypothesis, we 
found that our hypothesis was correct in that the number of 
solutions rose with an increase in a for the square and the 
cubic equation. For the 4th power equation, however, the 
density fluctuated rapidly but stayed stable as a increased. 
We did not expect to see any taxicab number that could have 
a frequency of more than 20. However, in the cubic case we 
found a number (970,299,000,000 ) with the frequency of 42. 
Ramanujan’s formula to find solutions of the cubic equation 
could only find a small fraction of the solutions that we found 
by brute force, and as the numbers grew larger, the gap 
became bigger. This trend was not what we expected in our 
initial hypothesis.
	 In this paper, we showed the trends of three Diophantine 
equations of the third power of the three input variables. 
We have merely explored a small area of number theory of 
Diophantine equations. An idea for a future research topic 
would be to analyze and compare the density of a3 + b3 + c3 
+ d3 = e3 with the equations that we have studied. However, 
as the number of variables in the Diophantine equation 
increases, it takes up a lot of computation time to find all the 
solutions. We tried our Python programs with the four variable 
Diophantine equation. We ran the program for this equation 
for three days but the program did not even reach a = 1000. 
The reason for this is that the number of loops increases 
with the addition of another variable. So, if one Diophantine 
equation takes 1 hour to finish finding the solutions up to 
a = 10,000, the time taken to finish the same Diophantine 
equation with an added variable will increase by a factor of 
ten thousand (i.e. take 10,000 hours), and so on. Therefore, 
this is a good idea for a future research paper in which this 
equation can be tackled by better algorithms or by using 
powerful processors and distributed programming. We could 
also find solutions for all the above Diophantine equations till 
a equals one million to see how the density graphs change 
after a = 10,000. However, it would require faster computers 
and more efficient algorithms. 

MATERIALS AND METHODS
	 In our paper we utilized the power of computer 
programming to create and evaluate our data. We wrote 
Python programs (Python version 3.7) for finding all our 
numbers for each Diophantine equation using brute force. 
By brute force we mean that we tried every combination of 
numbers to find the solutions to the equations. We redirected 
the output into a text file arranged as columns of a, b, c and d. 
We designed a separate Python program to parse that data 

into density per hundred numbers of a. To find the density 
of numbers we arranged all solutions in increasing order 
of a. Then another program found the difference of the line 
numbers of every consecutive multiple of 100 as. In order 
to find curves that fit our data for easy comparison we used 
polyfit and poly1d functions that are available in the numpy 
scientific package of Python.
	 To find perfect power taxicab numbers, we created 
Python programs that would take every d and tried to find if 
the same d could be expressed in different ways. It did this by 
parsing our file and matching the d values. 
	 To generate the solutions obtained by Ramanujan’s 
equation we needed to find x and y such that the equation 
(3x2 + 5xy - 5y2)3 + (4x2 - 4xy + 6y2)3 + (5x2 - 5xy - 3y2)3 = 
(6x2 - 4xy + 4y2)3 could yield solutions within the range that we 
had selected: a ranging from 0 to 10,000 and a ≥ b and c. To 
accomplish this, we considered the three contributing terms: 
3x2 + 5xy - 5y2, 4x2 - 4xy + 6y2 and 5x2 - 5xy - 3y2. Each of 
these had to be positive integers and less than 10,000. So, 
we plotted the following inequations:

3x2 + 5xy - 5y2 > 0
3x2 + 5xy - 5y2 < 10000

4x2 - 4xy + 6y2 > 0 
4x2 - 4xy + 6y2 < 10000

5x2 - 5xy - 3y2 > 0
5x2 - 5xy - 3y2 < 10000

	 Out of the above only the curves corresponding to 
4x2 - 4xy + 6y2 were bound and closed. From this we could 
determine the values of x needed to calculate the solutions to 
the cubic equation in the range of values that we had selected.  
We found that the x should range from -55 to +55. The plot of 
the other equations showed us that y should always be less 
than x. We implemented a Python program which we looped 
x and y from -55 to 55 and selected only those solutions for 
which a, b, c and d were positive and the largest of the three 
inputs is less than or equal to 10,000; the rest of the numbers 
were discarded.
	 We arranged all our data output by Python programs 
separated by ‘|’, so it was easier to input this data into Microsoft 
Excel (version 1902) to create graphs which we could then 
analyze. Then, we arranged this data per hundred numbers of 
a and compared its density to that achieved by our data. We 
also used commands like ‘grep’ for finding a number in our 
data, ‘sort’ for sorting data in an order, ‘wc’ for counting lines, 
‘sed’ for deleting or adding characters at every line. These 
commands were available to us as we operated on a Linux 
machine.
	 Since our programs were complex and computationally 
intensive, we purchased an instance on Amazon Web 
Services for computational time. We needed this to speed up 
the execution of our programs. While searching for numbers, 
we were careful about any defects in our data. Initially, there 
were several problems in our data which we fixed through 
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rigorous searching and debugging. We always kept a backup 
of old data by making new files at every stage.
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