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variety of available methods, which is not always an easy 
choice to make. The advances made in machine learning in 
recent years have made it easier for the average user to try out 
different machine learning models. Currently, one of the most 
popular and easy-to-use frameworks for machine learning 
is scikit-learn, which is based on the Python programming 
language (4). It offers a variety of models ready to be used and 
trained, including logistic regression and random forest. Its 
high customizability proved to be useful in this investigation, 
as it allows for exploratory hyperparameter tuning. This pair 
of models were selected for this investigation in particular as 
these two methods have fundamentally different approaches 
to predicting the values of the dependent variables. Logistic 
regression tries to fit a straight-line separating data points in 
a dataset and minimizes the cost of the function by reducing 
incorrect predictions (5). Random forest makes predictions 
based on multiple decision trees, so the method is not limited 
by the constraints of a straight line and can be more versatile 
(6). Clearly, a random forest model is completely different 
from logistic regression. Furthermore, logistic regression is 
one of the oldest and simplest machine learning algorithms. 
Other models were also considered, such as support vector 
machines, but they do not differ from logistic regression as 
greatly as random forests do. 

This presents the question of which of the two is easier 
to use and more accurate. We defined ease of use as to how 
time-consuming and work-intensive it was to set the model up. 
Based on our previous knowledge, the hypothesis was that 
logistic regression would be easier to use than the random 
forest model because random forest would take too long to 
develop for a similar accuracy. However, this hypothesis was 
rejected based on a variety of measures, including accuracy 
and Fβ scores. Accuracy is the proportion of accurate 
predictions, while the Fβ score is the harmonic mean of 
precision (false positive rate) and recall (false negative rate), 
with a beta parameter specifying the weight of precision or 
recall. For this investigation, the beta parameter is set to give 
more weight to precision, which should minimize the rate of 
false positives. 

The dataset is forestry-based, containing numerous 
environmental variables (7). It was chosen arbitrarily as the 
focus of this investigation is on the models, not the dataset. 
The two models will be used to predict cover types for forests 
based on elevation, aspect, slope, and others.

Comparison of the ease of use and accuracy of two 
machine learning algorithms – forestry case study

SUMMARY
With the availability of massive amounts of data and 
cheap computing, machine learning has become 
increasingly viable to create extensive multivariate 
mathematical models of natural phenomena to help 
predict accurate future trends that would have been 
impossible for humans to accomplish by themselves. 
There is a wide variety of different machine learning 
algorithms available, and it is not always known 
which one will perform best for a given dataset. This 
can be determined after training and evaluating the 
different models and comparing them. In this case 
study, logistic regression and random forest models 
were compared in terms of accuracy and ease of 
use. We hypothesized that logistic regression would 
yield a higher accuracy and be easier to set up in a 
comparable scenario for a given dataset compared 
to random forest. Both algorithms used the same 
forestry dataset to see which one would outperform 
the other. Initially, logistic regression looked like the 
better choice, however, after a variety of comparisons, 
random forest yielded higher performance in both 
accuracy measurements (accuracy=0.9722, Fβ=0.9722 
for random forest vs. accuracy=0.7141, Fβ=0.6990 
for logistic regression) and did not require as much 
detailed tuning as logistic regression did.

INTRODUCTION
Machine learning can be defined in many different ways. 

Arthur Samuel defined it as an ability of a computer to learn 
without telling it precisely what to do (1). However, a more 
modern definition can be that of Tom Mitchell. He defined 
it as “the study of computer algorithms that allow computer 
programs to automatically improve through experience” (2). 
Machine learning algorithms look for patterns and correlations 
between different independent variables and how they affect 
the dependent variable. The resulting trained model will 
then attempt to predict the outcome of a dependent variable 
in a new scenario based on independent variables put into 
it. Machine learning promises to analyze large quantities of 
data in an exponentially shorter time than a human would 
while finding patterns that may not have been obvious to 
any human operator. This is the main reason for the rapid 
interest in and growth of machine learning, demonstrated by 
the spending increase from $1.58 billion in 2017 to a predicted 
$20.83 billion in 2024 (3). 

Data scientists must choose a suitable model from a 
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RESULTS
The first model tested was logistic regression. The different 

solvers for it were compared with and without normalization 
(Table 1). Normalization improved the performance of the 
sag and saga solvers, taking roughly the same physical time 
(within random variation) for the same accuracy (about 0.71). 
Normalization also minimally improved the accuracy for the 
newton-cg solver. Surprisingly, lbfgs benefited the most from 
normalization. Normalization was kept for the rest of the 
measurements due to improvements across all solvers.

However, we kept the time supplied to each solver 
constant, making the results easier to compare as ease of 
use is one of the criteria. Newton-cg, sag, and saga offer the 
same accuracy (0.7141) in a very similar time frame (Table 
2), with lbfgs giving the lowest accuracy (0.7115) for the given 
time. Thus, it is hard to select the best solver due to the 
similarity in the accuracies and time needed.

With the solver selected and normalization applied, the 
number of iterations was increased to see what the highest 
accuracy that can be obtained is. However, there were no 
observable improvements in accuracy in the training set 
after 400 iterations, and the time needed increased rapidly. 
Other optimizations for logistic regression will be explored 
depending on the results obtained by the random forest 
classifier.

The model does not seem to improve with more training 

examples (Figure 1), and the cross-validation score even 
seems to decrease at some stages. The decrease in accuracy 
is quite unexpected for the same data set as in general the 
accuracy should increase with more training examples. This 
points to the limitations of the model itself, not the number of 
training examples. After the main parameters were selected, 
the final accuracy achieved was 0.7141, and the Fβ score 
was 0.6990. We next investigated random forest in order to 
compare the results to this model.

The first decision for creating a model was the selection 
of the random forest criterion. The accuracies obtained only 
differ by 0.025  between the two criteria, Gini and entropy, 
(Table 3).  So, the entropy criterion was used for the final 
model as even such a small change may result in a higher 
final accuracy for the model.

The learning curves show that when more data is supplied, 
the accuracy is increased (Figure 2). The training score was 
compared to the cross-validation score. As expected, the 
cross-validation scores were lower than the training scores. 
Hence, using more data points would increase accuracy, but 
it is not a valuable use of time because it could be used for 
other purposes (e.g., exploring alternative models or more 
hyperparameter tuning).

The accuracy consistently increased with more decision 
trees (Figure 3) up until about 50 trees, where it leveled off. 
Using more than a hundred decision trees provides negligible 
improvements, with no improvements observed after 400 
decision trees. 

Next, hyperparameter tuning was performed to see its 
benefits. This was done as random forest already had better 
baseline results than logistic regression, so, a decision was 
made to try and improve it with hyperparameter tuning. As 
a baseline, a RandomForestClassifier was run several times 

Table 1. Accuracy table for an equal number of iterations for 
different solvers. Separate results for solvers with and without 
normalization of data applied.

Table 2. Accuracy results for an equal amount of time for dif-
ferent solvers. The max_iter parameter controlled how long each 
solver took

Table 3: Accuracy results for the different criteria for the same 
amount of time for a fair comparison.

Table 4: Accuracy results for each cover type as well as the 
number of samples for each cover type. The table presents a 
clear relationship between the accuracy and number of samples
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with only the random state set to 0 and no other parameters 
set, and its accuracy was on average 0.9635. This result was 
then compared to the results from the hyperparameter tuning. 

The final accuracy was on average 0.9720, which is only a 
marginal improvement over the baseline; however, it is still an 
improvement as all of the final accuracy tests yielded higher 

results than any of the baseline tests. For a more objective 
measure of accuracy, the Fβ score was used to assess the 
final model, as it accounts for any imbalances in the dataset, 
which is the case in this investigation. An accuracy value of 
0.97217 was achieved. This means that random forest was 
more accurate than logistic regression in both measures.

When compared to the distribution of the cover types in 
the dataset (Table 4), a clear trend can be seen: the more 
training examples there were for a cover type, the higher the 
accuracy for that cover type was. 

Overall, the baseline random forest model (0.9635) had 
significantly greater accuracy than the logistic regression 
model (0.7141) even with the solvers investigated. 
Furthermore, hyperparameter tuning provided a significant 
increase in accuracy from the baseline model (0.97217). To 
increase the performance of logistic regression, significantly 
more effort would have to be put into the model and the data 
itself, which goes against the ease of use criterion set out 
in this investigation while comparing the two models. The 
results lead to the rejection of the hypothesis. 

DISCUSSION
When faced with a new dataset, such as the forestry 

one in this investigation, it is often difficult to decide which 
model to use. Although each dataset is unique, the basic use 
of models for multivariate classification is roughly the same 
for each case. The aim of this investigation was to determine 
which method would be easier to use while also yielding high 
accuracy. In the beginning, higher accuracy results were 
expected from logistic regression, however, it massively 
underperformed in comparison to random forest in both of 
the criteria that were set (accuracy and ease of use). 

In our investigation, random forest needed less pre-
processing of the data for it to yield high accuracy. A 
logistic regression model would need much more manual 
data pre-processing, such as feature selection including 
multicollinearity analysis to reach comparable accuracy 
levels (8). As a random forest uses a subset of the available 
features for each tree, it may remove features that are highly 
correlated to each other, increasing the overall accuracy. For 
a logistic regression model, this correlation analysis would 
have to be done manually and before the training. Not doing 
that may make the learning of the model slower or introduce 
harmful bias. Using a random forest prevents these issues. 
Furthermore, logistic regression attempts to fit a linear model 
to the data. A model may perform better if it is a polynomial 
model, which can be done by squaring one of the features, 
for instance. All these issues must be resolved manually for 
logistic regression and they do not concern random forest. 

The dataset used in this investigation was relatively 
large with a small number of features. The accuracies for 
the different solvers (Table 1), considering the number of 
iterations, accuracy, and time needed, can then easily be 
explained for this dataset. In the case of newton-cg, it uses an 
exact Hessian matrix to optimize the model, which explains 

Figure 1: Learning curve for the sag solver (logistic regres-
sion). Accuracy plotted against the number of training examples 
supplied, which shows how the model can become more accurate 
with more data provided to it.

Figure 2: Learning curve for random forest. Accuracy plotted 
against the number of training examples supplied, which shows how 
the model can become more accurate with more data provided to it.

Figure 3: Accuracy plotted against a given number of decision 
trees. More decision trees should result in a higher accuracy as it 
reduces the variance by averaging the results from several trees, 
preventing overfitting.
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the small number of iterations needed to converge as well as 
the high accuracy; however, it also makes the calculations 
more computationally expensive. The key difference between 
newton-cg and lbfgs is that lbfgs uses an approximate 
Hessian matrix, making it less computationally expensive. 
However, this explains the need for more iterations. It does 
not generally perform well on larger datasets.

Sag works differently to newton-cg and lbfgs. It minimizes 
finite sums of convex functions and it is one of the fastest 
solvers for large datasets (number of data points and the 
number of features is both large). As our dataset does not 
have many features, this might be the reason for the lower-
than-expected performance. However, the dataset had many 
data points, meaning it performed better than lbfgs. Saga 
works similarly to sag: it is a variation of sag which supports 
L1 regularization. It supports sparse datasets (the one in the 
case study was not), as well as very large data sets (the one in 
the case study was not). Although secondary sources seem 
to suggest that saga should, in general, be faster than sag, 
the empirical evidence does not support such a conclusion 
for the case study, which may be due to the reasons outlined.

A random forest without any hyperparameter tuning was 
already much more accurate than any of the above solvers, 
and so that was the model with more tuning put into it. This 
is why random forest was focused on more during the end of 
the investigation.

The models tested in this investigation were chosen 
because they are fundamentally different. However, a similar 
investigation can be carried out on any two other models, such 
as support vector machines and neural networks, which are 
also two very different approaches. Neural networks promise 
to increase the accuracy obtained, as they can combine many 

features to produce more features by themselves, which also 
means that they can be easy to use. However, this discussion 
is beyond the scope of this investigation.

METHODS

Dataset
For this investigation, we used a forestry dataset (7). This 

dataset was used to predict cover types for forests using 
cartographical variables. 30x30 meter blocks of these forests 
are used for these cover types as this can be more easily 
controlled. These 30x30 meter areas also represent forests 
with minimal human-caused disturbances, so that existing 
forest cover types are more a result of ecological processes 
rather than forest management practices. The independent 
variables were derived from data originally obtained from 
the US Geological Survey (USGS) and US Forest Service 
(USFS) data. Data is not scaled and contains binary columns 
for qualitative independent variables (e.g., wilderness areas 
and soil types).  

The variables included in the dataset included information 
such as: Elevation, Aspect, Slope, Horizontal and vertical 
distance to hydrology, Horizontal distance to roadways, 
Hillshade indexes at different times of the day, Horizontal 
distance to fire points, Wilderness area (4 binary columns), 
Soil type (40 binary columns), Cover type (7 types). More 
detailed descriptions of each variable are included in the 
dataset (9).

Data pre-processing and pre-analysis
The data was supplied in a comma-delimited data format. 

Columns were labeled with their corresponding names, and 

Figure 4: Correlation table for the variables included in the dataset. The correlation between any two variables was calculated to 
determine which variables contribute the most towards the dependent variable and which variables are collinear.
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values were identified as either continuous or discrete. The 
file was then exported into a .csv format to conform with 
Pandas (Python data framework library). 

Soil type columns were merged into a single column with 
40 different categories possible, labeled from 0 to 39. This 
was done via a short script which first detected the number 
of the column selected (which indicated which soil type the 
area has) and then entered that number into a new column. 
The same process was repeated with the wilderness area: 
merging 4 binary columns into one label column.

The correlation values between all of the variables in 
the dataset were calculated (Figure 4). This allowed us to 
determine the variables that most significantly impacted the 
cover type, which were: elevation, slope, horizontal roadway, 
horizontal fire, soil type, and area. The highest correlation 
value was 0.2755 between cover and area, which is not a high 
value, implying that none of the independent variables are 
highly correlated to cover. For training, all of the independent 
variables were used, as there was a small number of them, and 
none were highly correlated to cover. Reducing the number of 
independent variables could affect the methodology due to 
underfitting or having a lower accuracy in general. 

The data is not equally distributed between the cover 
types, with type 2 being the most common and type 1 being 
slightly behind. The frequency of type 1 is two orders of 
magnitude larger than of type 4 (211840 vs 2747 data points), 
which skewed the results. So, this needed to be accounted 
for in the models to get the fairest and most accurate results 
as possible.

The data was randomly split into training and test data sets 
in a ratio of 70:30. This ratio was decided based on the size of 
the dataset (m=581013), which allowed for a large proportion 
of the examples to be left for testing purposes. Both models 
used the same sets of data to ensure that the variance was 
low, and any anomalies were shared across both, so neither 
would have an advantage over the other during testing. Using 
training data to assess the performance of the algorithms 
would not yield reliable results as it would not provide an 
accurate assessment of performance on unseen data.

Multivariate logistic regression
To test our hypothesis, we need to determine both how 

accurate and easy to use each model is for predicting the 
cover type in the forestry dataset. The first model tested was 
logistic regression and how different solvers for it performed. 
The tests were implemented to find the accuracy of each 
solver, while also noting the time taken for the accuracy to 
reach a certain threshold for a fair comparison. This was 
done by first inputting the train and test data to find the 
respective accuracies with a limited number of iterations (7). 
Then the accuracies were measured after a certain time to 
determine which solver yielded better accuracies given the 
time constraints. These limitations were set to keep variables 
constant and to check for the efficiency of each solver with 
the data set, which ultimately concluded which would be more 

accurate and easier to use.
Each model in scikit-learn has a random state parameter 

that is used as the seed for the random number generator. 
Throughout the whole investigation, it was set to the same 
value. This ensures that any improvements observed are not 
due to random variation, but only due to the changes made 
to the model. 

Python’s sklearn logistic regression model has a 
variety of different algorithms for gradient descent. In the 
documentation, it is recommended to use newton-cg, sag, 
saga, or lbfgs (liblinear is possible, however, limited to one-
versus-rest models). The different solvers were benchmarked 
against each other to compare their performance in terms of 
speed and accuracy. To provide reliable results, the number 
of iterations was limited to a fixed number of 100 epochs. 
The measurements were then repeated after normalizing 
the data, as sag and saga require normalization for optimal 
performance (5). The results for each solver are summarized 
in Table 1.

For the same number of iterations, the time taken for the 
optimization to complete varied greatly, and even though 
these results give some insight as to which solver is the 
most appropriate one for this case study, the control variable 
chosen was not giving comparable results because more time 
(and so computational power) to optimize the data naturally 
results in higher accuracy. This is why the control variable 
was switched to the time needed (around 127 seconds given 
for each solver, chosen arbitrarily) as it would give a better 
measure to compare the solvers.

No solver had an obvious advantage over the others in 
terms of accuracy, so sag was used as the solver for the final 
model due to the scalability for large datasets that it promises. 
There is no need to use saga in this investigation due to the 
limited number of features and no missing data points.

The train and test scores for a different number of training 
examples were very close to each other or even the same 
in some cases (Figure 1). Cross-validation was performed 
over 10 different splits of the part of the dataset under 
consideration (dependent on the number of training examples 
for each point), with 80% of the dataset going towards training 
and 20% towards testing for each split, in contrast to the 
training-testing split. As the dataset is large, more data points 
can be used for training in this case, and less for testing. 
This smoothed out any variation in the data supplied to the 
model and provided a more reliable method of assessing 
the accuracy of the model. The cross-validation score was 
calculated from the data that the model had not seen before, 
which better reflects a real-life scenario.

Random forest classifier
A random forest classifier is a collection of decision trees 

that are fit on sub-samples of the whole dataset and averages 
their results to improve accuracy. Each tree continuously 
splits its data into smaller and smaller groups according to 
the values of their parameters, until a result is obtained from 
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a leaf node. A random forest was used instead of a decision 
tree due to how easily a decision tree can overfit the data 
(high variance), yielding a higher accuracy while training but 
a lower accuracy in test data. A random forest negates this 
tendency by training a specified number of decision trees, 
which ‘spreads out’ the results to several different trees. Like 
logistic regression, the random forest model was created 
using sklearn’s ensemble package. 

The Gini coefficient measures the inequality among 
values of a frequency distribution. It can also be replaced by 
an entropy measure, which is the information gain. So, the 
impact of the criterion on the given accuracy for a set time 
was measured.

The accuracy for a different number of training examples 
was then investigated (Figure 2), which showed promising 
results. Cross-validation scores were calculated in the same 
way as in the learning curves for logistic regression.

As a random forest consists of several decision trees, 
the relationship of the number of trees to the accuracy was 
graphed (Figure 3), which showed an increase in accuracy up 
to a certain number of trees. This helped determine the value 
of the number of estimators parameter in hyperparameter 
tuning.

Hyperparameter tuning
As random forest was used for the final model, the values 

of the parameters available were tweaked (6):
•	n_estimators – It is the number of decision trees that 

need to be trained. The more, the better; however, it is also 
more computationally expensive. The selected value was 
400, as values above this one gave negligible improvements 
to the accuracy of the model.

•	criterion – It is the function measuring the quality of the 
split. The data gathered (Table 3) about the performance of 
each criterion suggests a higher accuracy while using this 
entropy criterion.

•	max_depth – It is the measure of how deep a tree can go 
before a leaf node is reached. A value of ‘None’ means the 
tree will be expanded until the leaves are pure (or have fewer 
than min_samples_split samples, if specified). This was the 
optimal value found as it did not produce overfitting in the 
testing set while giving the model a large depth, preventing 
underfitting.

•	min_samples_split – It is the minimum number of 
samples needed to split a node. A value of 2 was chosen as 
this is a good in-between value (and recommended by scikit-
learn as the default value). This value lies in the ideal range of 
1 to 40, as found by empirical methods (10).

•	min_samples_leaf – This is the minimum number of 
samples needed to be a leaf node. The value of 1 was chosen 
because a split must result in at least one sample being left. 
Using any higher values may decrease the accuracy. This is 
also the value recommended by scikit-learn.

•	min_weight_fraction_leaf – This is only applied if the 
samples are given weights. It comes from the sum of weights 

of samples at a leaf node and is the minimum weighted 
fraction of those. For our model, this value was kept at 0.0, as 
each class has an equal weight.

•	max_features – This is the measure of how many 
features can be considered for a split. It is made to be ‘auto’ 
as this value makes the max_features equal to the square 
root of the number of features as this is a good in-between 
value.

•	max_leaf_nodes – This is the maximum number of leaf 
nodes a tree can have, which reduces impurity. The value of 
‘None’ has been kept, as this won’t limit the number of leaf 
nodes; it is recommended by scikit-learn.

•	min_impurity_decrease – a node can only be split if 
the split decreases the impurity of a node by that amount or 
more. It is kept at 0.0 (recommended value), as specifying 
a minimum decrease in impurity may increase the accuracy; 
however, it may also cause overfitting.

•	bootstrap – This is used in order to determine whether 
the bootstrap samples need to be used when training a tree. 
The final model kept this value as ‘False’, as doing so may 
increase overall accuracy at the cost of an increase in time 
needed for training.

•	oob_score – This determines whether out-of-bag 
samples are used to estimate the accuracy. The final model 
kept this value as ‘False’, as the final model does not need to 
estimate the generalization accuracy

•	n_jobs – This is the number of jobs that need to run in 
parallel. A value of -1 was used as this causes all processes 
to be used, optimizing the model faster.

•	random_state – This is used in order to control the 
randomness when training a tree (keeps random choices of 
e.g., sampling of features) the same for each optimization of 
the tree. The final model kept this value as at ‘0’ for a fair 
comparison between the models.

•	verbose – This controls verbosity, The final model kept 
this value as at the recommended value of 0.

•	warm_start – This is used to determine whether to reuse 
the model from the previous call of the model and add to it. 
This was not used for the final model, so a value of ‘False’ was 
specified.

•	class_weight – This is the weight associated with the 
classes in the data. The final model kept this as not specified, 
as all our classes have equal weight.

•	ccp_alpha – this is used for Minimal Cost-Complexity 
Pruning, it is the complexity parameter. This value was kept at 
0.0 as the final model will not perform pruning.

•	max_samples – (if bootstrap is ‘True’) This is how many 
samples to get from the training dataset for each estimator. 
As the bootstrap is kept at ‘False’, it is not needed.

Final model
The final model included all the parameter values decided 

in hyperparameter turning. A detailed breakdown of the 
accuracies obtained is presented in Table 4.
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