
Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARHC 2021 | VOL 4 | 1

variety of available methods, which is not always an easy
choice to make. The advances made in machine learning in
recent years have made it easier for the average user to try out
different machine learning models. Currently, one of the most
popular and easy-to-use frameworks for machine learning
is scikit-learn, which is based on the Python programming
language (4). It offers a variety of models ready to be used and
trained, including logistic regression and random forest. Its
high customizability proved to be useful in this investigation,
as it allows for exploratory hyperparameter tuning. This pair
of models were selected for this investigation in particular as
these two methods have fundamentally different approaches
to predicting the values of the dependent variables. Logistic
regression tries to fit a straight-line separating data points in
a dataset and minimizes the cost of the function by reducing
incorrect predictions (5). Random forest makes predictions
based on multiple decision trees, so the method is not limited
by the constraints of a straight line and can be more versatile
(6). Clearly, a random forest model is completely different
from logistic regression. Furthermore, logistic regression is
one of the oldest and simplest machine learning algorithms.
Other models were also considered, such as support vector
machines, but they do not differ from logistic regression as
greatly as random forests do.

This presents the question of which of the two is easier
to use and more accurate. We defined ease of use as to how
time-consuming and work-intensive it was to set the model up.
Based on our previous knowledge, the hypothesis was that
logistic regression would be easier to use than the random
forest model because random forest would take too long to
develop for a similar accuracy. However, this hypothesis was
rejected based on a variety of measures, including accuracy
and Fβ scores. Accuracy is the proportion of accurate
predictions, while the Fβ score is the harmonic mean of
precision (false positive rate) and recall (false negative rate),
with a beta parameter specifying the weight of precision or
recall. For this investigation, the beta parameter is set to give
more weight to precision, which should minimize the rate of
false positives.

The dataset is forestry-based, containing numerous
environmental variables (7). It was chosen arbitrarily as the
focus of this investigation is on the models, not the dataset.
The two models will be used to predict cover types for forests
based on elevation, aspect, slope, and others.

Comparison of the ease of use and accuracy of two
machine learning algorithms – forestry case study

SUMMARY
With the availability of massive amounts of data and
cheap computing, machine learning has become
increasingly viable to create extensive multivariate
mathematical models of natural phenomena to help
predict accurate future trends that would have been
impossible for humans to accomplish by themselves.
There is a wide variety of different machine learning
algorithms available, and it is not always known
which one will perform best for a given dataset. This
can be determined after training and evaluating the
different models and comparing them. In this case
study, logistic regression and random forest models
were compared in terms of accuracy and ease of
use. We hypothesized that logistic regression would
yield a higher accuracy and be easier to set up in a
comparable scenario for a given dataset compared
to random forest. Both algorithms used the same
forestry dataset to see which one would outperform
the other. Initially, logistic regression looked like the
better choice, however, after a variety of comparisons,
random forest yielded higher performance in both
accuracy measurements (accuracy=0.9722, Fβ=0.9722
for random forest vs. accuracy=0.7141, Fβ=0.6990
for logistic regression) and did not require as much
detailed tuning as logistic regression did.

INTRODUCTION
Machine learning can be defined in many different ways.

Arthur Samuel defined it as an ability of a computer to learn
without telling it precisely what to do (1). However, a more
modern definition can be that of Tom Mitchell. He defined
it as “the study of computer algorithms that allow computer
programs to automatically improve through experience” (2).
Machine learning algorithms look for patterns and correlations
between different independent variables and how they affect
the dependent variable. The resulting trained model will
then attempt to predict the outcome of a dependent variable
in a new scenario based on independent variables put into
it. Machine learning promises to analyze large quantities of
data in an exponentially shorter time than a human would
while finding patterns that may not have been obvious to
any human operator. This is the main reason for the rapid
interest in and growth of machine learning, demonstrated by
the spending increase from $1.58 billion in 2017 to a predicted
$20.83 billion in 2024 (3).

Data scientists must choose a suitable model from a

Bhavya Bhatia1*, Jakub Michalski2*, Jegath Shebin3

1Nord Anglia International School, Dubai, United Arab Emirates
2Dubai College, Dubai, United Arab Emirates
3NTT Data Services Chennai
*these authors contributed equally to this work

Article

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 2

RESULTS
The first model tested was logistic regression. The different

solvers for it were compared with and without normalization
(Table 1). Normalization improved the performance of the
sag and saga solvers, taking roughly the same physical time
(within random variation) for the same accuracy (about 0.71).
Normalization also minimally improved the accuracy for the
newton-cg solver. Surprisingly, lbfgs benefited the most from
normalization. Normalization was kept for the rest of the
measurements due to improvements across all solvers.

However, we kept the time supplied to each solver
constant, making the results easier to compare as ease of
use is one of the criteria. Newton-cg, sag, and saga offer the
same accuracy (0.7141) in a very similar time frame (Table
2), with lbfgs giving the lowest accuracy (0.7115) for the given
time. Thus, it is hard to select the best solver due to the
similarity in the accuracies and time needed.

With the solver selected and normalization applied, the
number of iterations was increased to see what the highest
accuracy that can be obtained is. However, there were no
observable improvements in accuracy in the training set
after 400 iterations, and the time needed increased rapidly.
Other optimizations for logistic regression will be explored
depending on the results obtained by the random forest
classifier.

The model does not seem to improve with more training

examples (Figure 1), and the cross-validation score even
seems to decrease at some stages. The decrease in accuracy
is quite unexpected for the same data set as in general the
accuracy should increase with more training examples. This
points to the limitations of the model itself, not the number of
training examples. After the main parameters were selected,
the final accuracy achieved was 0.7141, and the Fβ score
was 0.6990. We next investigated random forest in order to
compare the results to this model.

The first decision for creating a model was the selection
of the random forest criterion. The accuracies obtained only
differ by 0.025 between the two criteria, Gini and entropy,
(Table 3). So, the entropy criterion was used for the final
model as even such a small change may result in a higher
final accuracy for the model.

The learning curves show that when more data is supplied,
the accuracy is increased (Figure 2). The training score was
compared to the cross-validation score. As expected, the
cross-validation scores were lower than the training scores.
Hence, using more data points would increase accuracy, but
it is not a valuable use of time because it could be used for
other purposes (e.g., exploring alternative models or more
hyperparameter tuning).

The accuracy consistently increased with more decision
trees (Figure 3) up until about 50 trees, where it leveled off.
Using more than a hundred decision trees provides negligible
improvements, with no improvements observed after 400
decision trees.

Next, hyperparameter tuning was performed to see its
benefits. This was done as random forest already had better
baseline results than logistic regression, so, a decision was
made to try and improve it with hyperparameter tuning. As
a baseline, a RandomForestClassifier was run several times

Table 1. Accuracy table for an equal number of iterations for
different solvers. Separate results for solvers with and without
normalization of data applied.

Table 2. Accuracy results for an equal amount of time for dif-
ferent solvers. The max_iter parameter controlled how long each
solver took

Table 3: Accuracy results for the different criteria for the same
amount of time for a fair comparison.

Table 4: Accuracy results for each cover type as well as the
number of samples for each cover type. The table presents a
clear relationship between the accuracy and number of samples

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 3

with only the random state set to 0 and no other parameters
set, and its accuracy was on average 0.9635. This result was
then compared to the results from the hyperparameter tuning.

The final accuracy was on average 0.9720, which is only a
marginal improvement over the baseline; however, it is still an
improvement as all of the final accuracy tests yielded higher

results than any of the baseline tests. For a more objective
measure of accuracy, the Fβ score was used to assess the
final model, as it accounts for any imbalances in the dataset,
which is the case in this investigation. An accuracy value of
0.97217 was achieved. This means that random forest was
more accurate than logistic regression in both measures.

When compared to the distribution of the cover types in
the dataset (Table 4), a clear trend can be seen: the more
training examples there were for a cover type, the higher the
accuracy for that cover type was.

Overall, the baseline random forest model (0.9635) had
significantly greater accuracy than the logistic regression
model (0.7141) even with the solvers investigated.
Furthermore, hyperparameter tuning provided a significant
increase in accuracy from the baseline model (0.97217). To
increase the performance of logistic regression, significantly
more effort would have to be put into the model and the data
itself, which goes against the ease of use criterion set out
in this investigation while comparing the two models. The
results lead to the rejection of the hypothesis.

DISCUSSION
When faced with a new dataset, such as the forestry

one in this investigation, it is often difficult to decide which
model to use. Although each dataset is unique, the basic use
of models for multivariate classification is roughly the same
for each case. The aim of this investigation was to determine
which method would be easier to use while also yielding high
accuracy. In the beginning, higher accuracy results were
expected from logistic regression, however, it massively
underperformed in comparison to random forest in both of
the criteria that were set (accuracy and ease of use).

In our investigation, random forest needed less pre-
processing of the data for it to yield high accuracy. A
logistic regression model would need much more manual
data pre-processing, such as feature selection including
multicollinearity analysis to reach comparable accuracy
levels (8). As a random forest uses a subset of the available
features for each tree, it may remove features that are highly
correlated to each other, increasing the overall accuracy. For
a logistic regression model, this correlation analysis would
have to be done manually and before the training. Not doing
that may make the learning of the model slower or introduce
harmful bias. Using a random forest prevents these issues.
Furthermore, logistic regression attempts to fit a linear model
to the data. A model may perform better if it is a polynomial
model, which can be done by squaring one of the features,
for instance. All these issues must be resolved manually for
logistic regression and they do not concern random forest.

The dataset used in this investigation was relatively
large with a small number of features. The accuracies for
the different solvers (Table 1), considering the number of
iterations, accuracy, and time needed, can then easily be
explained for this dataset. In the case of newton-cg, it uses an
exact Hessian matrix to optimize the model, which explains

Figure 1: Learning curve for the sag solver (logistic regres-
sion). Accuracy plotted against the number of training examples
supplied, which shows how the model can become more accurate
with more data provided to it.

Figure 2: Learning curve for random forest. Accuracy plotted
against the number of training examples supplied, which shows how
the model can become more accurate with more data provided to it.

Figure 3: Accuracy plotted against a given number of decision
trees. More decision trees should result in a higher accuracy as it
reduces the variance by averaging the results from several trees,
preventing overfitting.

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 4

the small number of iterations needed to converge as well as
the high accuracy; however, it also makes the calculations
more computationally expensive. The key difference between
newton-cg and lbfgs is that lbfgs uses an approximate
Hessian matrix, making it less computationally expensive.
However, this explains the need for more iterations. It does
not generally perform well on larger datasets.

Sag works differently to newton-cg and lbfgs. It minimizes
finite sums of convex functions and it is one of the fastest
solvers for large datasets (number of data points and the
number of features is both large). As our dataset does not
have many features, this might be the reason for the lower-
than-expected performance. However, the dataset had many
data points, meaning it performed better than lbfgs. Saga
works similarly to sag: it is a variation of sag which supports
L1 regularization. It supports sparse datasets (the one in the
case study was not), as well as very large data sets (the one in
the case study was not). Although secondary sources seem
to suggest that saga should, in general, be faster than sag,
the empirical evidence does not support such a conclusion
for the case study, which may be due to the reasons outlined.

A random forest without any hyperparameter tuning was
already much more accurate than any of the above solvers,
and so that was the model with more tuning put into it. This
is why random forest was focused on more during the end of
the investigation.

The models tested in this investigation were chosen
because they are fundamentally different. However, a similar
investigation can be carried out on any two other models, such
as support vector machines and neural networks, which are
also two very different approaches. Neural networks promise
to increase the accuracy obtained, as they can combine many

features to produce more features by themselves, which also
means that they can be easy to use. However, this discussion
is beyond the scope of this investigation.

METHODS

Dataset
For this investigation, we used a forestry dataset (7). This

dataset was used to predict cover types for forests using
cartographical variables. 30x30 meter blocks of these forests
are used for these cover types as this can be more easily
controlled. These 30x30 meter areas also represent forests
with minimal human-caused disturbances, so that existing
forest cover types are more a result of ecological processes
rather than forest management practices. The independent
variables were derived from data originally obtained from
the US Geological Survey (USGS) and US Forest Service
(USFS) data. Data is not scaled and contains binary columns
for qualitative independent variables (e.g., wilderness areas
and soil types).

The variables included in the dataset included information
such as: Elevation, Aspect, Slope, Horizontal and vertical
distance to hydrology, Horizontal distance to roadways,
Hillshade indexes at different times of the day, Horizontal
distance to fire points, Wilderness area (4 binary columns),
Soil type (40 binary columns), Cover type (7 types). More
detailed descriptions of each variable are included in the
dataset (9).

Data pre-processing and pre-analysis
The data was supplied in a comma-delimited data format.

Columns were labeled with their corresponding names, and

Figure 4: Correlation table for the variables included in the dataset. The correlation between any two variables was calculated to
determine which variables contribute the most towards the dependent variable and which variables are collinear.

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 5

values were identified as either continuous or discrete. The
file was then exported into a .csv format to conform with
Pandas (Python data framework library).

Soil type columns were merged into a single column with
40 different categories possible, labeled from 0 to 39. This
was done via a short script which first detected the number
of the column selected (which indicated which soil type the
area has) and then entered that number into a new column.
The same process was repeated with the wilderness area:
merging 4 binary columns into one label column.

The correlation values between all of the variables in
the dataset were calculated (Figure 4). This allowed us to
determine the variables that most significantly impacted the
cover type, which were: elevation, slope, horizontal roadway,
horizontal fire, soil type, and area. The highest correlation
value was 0.2755 between cover and area, which is not a high
value, implying that none of the independent variables are
highly correlated to cover. For training, all of the independent
variables were used, as there was a small number of them, and
none were highly correlated to cover. Reducing the number of
independent variables could affect the methodology due to
underfitting or having a lower accuracy in general.

The data is not equally distributed between the cover
types, with type 2 being the most common and type 1 being
slightly behind. The frequency of type 1 is two orders of
magnitude larger than of type 4 (211840 vs 2747 data points),
which skewed the results. So, this needed to be accounted
for in the models to get the fairest and most accurate results
as possible.

The data was randomly split into training and test data sets
in a ratio of 70:30. This ratio was decided based on the size of
the dataset (m=581013), which allowed for a large proportion
of the examples to be left for testing purposes. Both models
used the same sets of data to ensure that the variance was
low, and any anomalies were shared across both, so neither
would have an advantage over the other during testing. Using
training data to assess the performance of the algorithms
would not yield reliable results as it would not provide an
accurate assessment of performance on unseen data.

Multivariate logistic regression
To test our hypothesis, we need to determine both how

accurate and easy to use each model is for predicting the
cover type in the forestry dataset. The first model tested was
logistic regression and how different solvers for it performed.
The tests were implemented to find the accuracy of each
solver, while also noting the time taken for the accuracy to
reach a certain threshold for a fair comparison. This was
done by first inputting the train and test data to find the
respective accuracies with a limited number of iterations (7).
Then the accuracies were measured after a certain time to
determine which solver yielded better accuracies given the
time constraints. These limitations were set to keep variables
constant and to check for the efficiency of each solver with
the data set, which ultimately concluded which would be more

accurate and easier to use.
Each model in scikit-learn has a random state parameter

that is used as the seed for the random number generator.
Throughout the whole investigation, it was set to the same
value. This ensures that any improvements observed are not
due to random variation, but only due to the changes made
to the model.

Python’s sklearn logistic regression model has a
variety of different algorithms for gradient descent. In the
documentation, it is recommended to use newton-cg, sag,
saga, or lbfgs (liblinear is possible, however, limited to one-
versus-rest models). The different solvers were benchmarked
against each other to compare their performance in terms of
speed and accuracy. To provide reliable results, the number
of iterations was limited to a fixed number of 100 epochs.
The measurements were then repeated after normalizing
the data, as sag and saga require normalization for optimal
performance (5). The results for each solver are summarized
in Table 1.

For the same number of iterations, the time taken for the
optimization to complete varied greatly, and even though
these results give some insight as to which solver is the
most appropriate one for this case study, the control variable
chosen was not giving comparable results because more time
(and so computational power) to optimize the data naturally
results in higher accuracy. This is why the control variable
was switched to the time needed (around 127 seconds given
for each solver, chosen arbitrarily) as it would give a better
measure to compare the solvers.

No solver had an obvious advantage over the others in
terms of accuracy, so sag was used as the solver for the final
model due to the scalability for large datasets that it promises.
There is no need to use saga in this investigation due to the
limited number of features and no missing data points.

The train and test scores for a different number of training
examples were very close to each other or even the same
in some cases (Figure 1). Cross-validation was performed
over 10 different splits of the part of the dataset under
consideration (dependent on the number of training examples
for each point), with 80% of the dataset going towards training
and 20% towards testing for each split, in contrast to the
training-testing split. As the dataset is large, more data points
can be used for training in this case, and less for testing.
This smoothed out any variation in the data supplied to the
model and provided a more reliable method of assessing
the accuracy of the model. The cross-validation score was
calculated from the data that the model had not seen before,
which better reflects a real-life scenario.

Random forest classifier
A random forest classifier is a collection of decision trees

that are fit on sub-samples of the whole dataset and averages
their results to improve accuracy. Each tree continuously
splits its data into smaller and smaller groups according to
the values of their parameters, until a result is obtained from

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 6

a leaf node. A random forest was used instead of a decision
tree due to how easily a decision tree can overfit the data
(high variance), yielding a higher accuracy while training but
a lower accuracy in test data. A random forest negates this
tendency by training a specified number of decision trees,
which ‘spreads out’ the results to several different trees. Like
logistic regression, the random forest model was created
using sklearn’s ensemble package.

The Gini coefficient measures the inequality among
values of a frequency distribution. It can also be replaced by
an entropy measure, which is the information gain. So, the
impact of the criterion on the given accuracy for a set time
was measured.

The accuracy for a different number of training examples
was then investigated (Figure 2), which showed promising
results. Cross-validation scores were calculated in the same
way as in the learning curves for logistic regression.

As a random forest consists of several decision trees,
the relationship of the number of trees to the accuracy was
graphed (Figure 3), which showed an increase in accuracy up
to a certain number of trees. This helped determine the value
of the number of estimators parameter in hyperparameter
tuning.

Hyperparameter tuning
As random forest was used for the final model, the values

of the parameters available were tweaked (6):
•	n_estimators – It is the number of decision trees that

need to be trained. The more, the better; however, it is also
more computationally expensive. The selected value was
400, as values above this one gave negligible improvements
to the accuracy of the model.

•	criterion – It is the function measuring the quality of the
split. The data gathered (Table 3) about the performance of
each criterion suggests a higher accuracy while using this
entropy criterion.

•	max_depth – It is the measure of how deep a tree can go
before a leaf node is reached. A value of ‘None’ means the
tree will be expanded until the leaves are pure (or have fewer
than min_samples_split samples, if specified). This was the
optimal value found as it did not produce overfitting in the
testing set while giving the model a large depth, preventing
underfitting.

•	min_samples_split – It is the minimum number of
samples needed to split a node. A value of 2 was chosen as
this is a good in-between value (and recommended by scikit-
learn as the default value). This value lies in the ideal range of
1 to 40, as found by empirical methods (10).

•	min_samples_leaf – This is the minimum number of
samples needed to be a leaf node. The value of 1 was chosen
because a split must result in at least one sample being left.
Using any higher values may decrease the accuracy. This is
also the value recommended by scikit-learn.

•	min_weight_fraction_leaf – This is only applied if the
samples are given weights. It comes from the sum of weights

of samples at a leaf node and is the minimum weighted
fraction of those. For our model, this value was kept at 0.0, as
each class has an equal weight.

•	max_features – This is the measure of how many
features can be considered for a split. It is made to be ‘auto’
as this value makes the max_features equal to the square
root of the number of features as this is a good in-between
value.

•	max_leaf_nodes – This is the maximum number of leaf
nodes a tree can have, which reduces impurity. The value of
‘None’ has been kept, as this won’t limit the number of leaf
nodes; it is recommended by scikit-learn.

•	min_impurity_decrease – a node can only be split if
the split decreases the impurity of a node by that amount or
more. It is kept at 0.0 (recommended value), as specifying
a minimum decrease in impurity may increase the accuracy;
however, it may also cause overfitting.

•	bootstrap – This is used in order to determine whether
the bootstrap samples need to be used when training a tree.
The final model kept this value as ‘False’, as doing so may
increase overall accuracy at the cost of an increase in time
needed for training.

•	oob_score – This determines whether out-of-bag
samples are used to estimate the accuracy. The final model
kept this value as ‘False’, as the final model does not need to
estimate the generalization accuracy

•	n_jobs – This is the number of jobs that need to run in
parallel. A value of -1 was used as this causes all processes
to be used, optimizing the model faster.

•	random_state – This is used in order to control the
randomness when training a tree (keeps random choices of
e.g., sampling of features) the same for each optimization of
the tree. The final model kept this value as at ‘0’ for a fair
comparison between the models.

•	verbose – This controls verbosity, The final model kept
this value as at the recommended value of 0.

•	warm_start – This is used to determine whether to reuse
the model from the previous call of the model and add to it.
This was not used for the final model, so a value of ‘False’ was
specified.

•	class_weight – This is the weight associated with the
classes in the data. The final model kept this as not specified,
as all our classes have equal weight.

•	ccp_alpha – this is used for Minimal Cost-Complexity
Pruning, it is the complexity parameter. This value was kept at
0.0 as the final model will not perform pruning.

•	max_samples – (if bootstrap is ‘True’) This is how many
samples to get from the training dataset for each estimator.
As the bootstrap is kept at ‘False’, it is not needed.

Final model
The final model included all the parameter values decided

in hyperparameter turning. A detailed breakdown of the
accuracies obtained is presented in Table 4.

Journal of Emerging Investigators • www.emerginginvestigators.org 21 MARCH 2021 | VOL 4 | 7

ACKNOWLEDGMENTS
We would like to thank the NTT Data Chennai IT team for

teaching us machine learning as well as for helping us write
the paper.

Received: August 24, 2020
Accepted: February 6, 2021
Published: March 21, 2021

REFERENCES
1. Samuel, A. L. “Some Studies in Machine Learning Using
the Game of Checkers.” IBM Journal of Research and
Development, vol. 3, July 1959, pp. 210–229.
2. Mitchel, T. M. Machine Learning. Vol. 1, McGraw-Hill, 1997.
3. Desmond07/23/2019, Michael. “Machine Learning Market
to Grow to Nearly $21 Billion by 2024.” Pure AI, 23 July
2019, pureai.com/articles/2019/07/23/nwsdes-machine-
learningmarket-growth.aspx, Accessed 16 December 2019.
4. Pedregosa, F. et al. "Scikit-learn: Machine Learning in
Python". Journal of Machine Learning Research 12. (2011):
2825–2830.
5. Documentation of logistic regression: F, Pedregosa.
“Sklearn.linear_model.LogisticRegression.” Scikit, Journal
of Machine Learning Research, Dec. 2011, scikit-learn.
org/stable/modules/generated/sklearn.l inear_model.
LogisticRegression.html, Accessed 4 January 2020.
6. Pedregosa, F. “Sklearn.ensemble.RandomForestClassifier.”
Scikit, Dec. 2011, scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html, Accessed 4
January 2020.
7. Dua, D. "UCI Machine Learning Repository [http://archive.
ics.uci.edu/ml]." Irvine, CA: University of California, School of
Information and Computer Science. n.p.: n.p., 12 . 22 Jan.
2021, Accessed 17 January 2020.
8. Midi, Habshah, et al. “Collinearity Diagnostics of Binary
Logistic Regression Model.” Journal of Interdisciplinary
Mathematics, vol. 13, no. 3, 2010, pp. 253–267., doi:10.1080/
09720502.2010.10700699.
9. Descriptions and types of variables included in the dataset:
“Https://Archive.ics.uci.edu/Ml/Machine-LearningDatabases/
Covtype/Covtype.info.” Index of /Ml/MachineLearning-
Databases/Covtype, archive.ics.uci.edu/ml/ machine-
learning-databases/covtype/, Accessed 17 January 2020.
10. Mantovani, Rafael Gomes Mantovani Gome, et al. “An
Empirical Study on Hyperparameter Tuning of Decision
Trees". 5th Brazilian Conference on Intelligent System -
BRACIS 2016.”

Copyright: © 2021 Bhatia et al. All JEI articles are distributed
under the attribution non-commercial, no derivative license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).  This
means that anyone is free to share, copy and distribute an
unaltered article for non-commercial purposes provided the
original author and source is credited.

