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an El Niño or La Niña is present, global temperatures are 
raised or lowered, respectively (4). 
	 ENSO	 specifically	 influences	 the	 regional	 climate	
within	 California	 by	 shifting	 the	 location	 of	 the	 jet	 stream,	
which	has	a	large	impact	on	winter	weather	patterns	at	mid-
latitudes	 (5).	 This	 effect	 increases	 the	 amount	 of	 rainfall	
within	 the	 state	 during	 the	 wintertime	 when	 an	 El	 Niño	 is	
present,	while	 decreasing	 the	 amount	 of	 rainfall	 during	 the	
wintertime	 when	 La	 Niña	 is	 occurring	 (5,6).	 However,	 the	
changes	 in	 precipitation	 patterns	 within	 California	 owing	
to	 ENSO	 are	 more	 predictable	 within	 Southern	 California	
(5,6).	 If	 there	 is	neither	an	El	Niño	nor	a	La	Niña	occurring	
(ENSO	neutral),	 then	other	 large-scale	climate	cycles	(such	
as	the	Arctic	Oscillation)	have	a	larger	influence	on	weather	
patterns	within	North	America	(and	California)	(3).	As	global	
temperatures	 continue	 to	 rise,	 however,	 the	 ENSO	 cycle	
is	 expected	 to	 have	 an	 increasingly	 greater	 effect	 on	 the	
temperatures	within	the	southern	United	States,	as	well	as	on	
global	precipitation	and	temperature	(7,8).	It	is	also	expected	
to	 lead	 to	more	 extreme	 droughts	 and	 storms	 globally	 (8).
	 The	Multivariate	ENSO	Index	(MEI)	is	used	to	represent	
the	ENSO	cycle	within	this	study.	MEI	combines	several	key	
variables	measured	in	the	tropical	Pacific	basin	(30°S-30°N	
and	100°E-70°W)	that	reflect	the	ENSO	cycle	phenomenon.	
The	variables	include	the	sea	surface	pressure,	sea	surface	
temperature,	zonal	and	meridional	components	of	the	surface	
winds,	and	cloudiness	of	the	sky	(9).	Significantly	positive	or	
significantly	negative	annual	mean	MEI	values	(≥	0.5	or	≤	-0.5)	
represent warm El Niño or cold La Niña events, respectively.
	 Another	 factor	 which	 influences	 California’s	 climate	
is	 the	 amount	 of	 precipitation	 it	 receives,	 which	 can	 result	
in	 drought	 should	 lower	 than	 normal	 precipitation	 levels	
persist.	 Drought	 is	 defined	 as	 the	 “temporary	 reduction	 in	
water	availability	below	normal	quantities”	(10),	which	can	be	
interpreted	as	an	 increase	 in	 the	dryness	of	an	area.	Even	
though	California	has	always	had	a	 long	history	of	drought,	
Diffenbaugh	 et	 al.	 (2015)	 state	 in	 their	 paper	 that	 recently	
California	has	had	concurrent	hot	and	dry	years	(11).	They	go	
on	to	say	that	the	probability	of	this	happening	in	the	future	
will	 increase,	with	 less	 precipitation	 and	more	 evaporation/
transpiration	resulting	from	warmer	temperatures	(11).	These	
conditions	can	bring	about	extreme	drought	events	such	as	
the	 one	 experienced	 by	 California	 from	 2012	 to	 2016	 (10).	
	 The	Standard	Precipitation	 Index	 (SPI)	 is	an	 index	 that	
measures	the	magnitude	of	meteorological	drought	for	short	

The impact of timing and magnitude of the El Niño-
Southern Oscillation on local precipitation levels and 
temperatures in the Bay Area

SUMMARY
 In this study, we analyzed temperature, 
Multivariate El Niño-Southern Oscillation Index (MEI), 
and Standard Precipitation Index (SPI) data from the 
San Francisco Bay Area from 1971 to 2016. We also 
analyzed CO2 records from Mauna Loa, HI for the 
same time period, along with the annual temperature 
anomalies for the Bay Area. Understanding the 
relationships between temperature, MEI, SPI, and 
CO2 concentration is important as they measure the 
major influencers of California’s regional climate: 
temperature, ENSO, precipitation, and atmospheric 
CO2. Thus, measurements of the three variables are 
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between temperature, MEI, SPI, and atmospheric 
CO2 within the Bay Area. We found that there was a 
clear correlation between warm anomalies and high 
MEI/low SPI in the period of 2013–2016, however 
only when both were historically significant. Also, 
MEI levels in general were highly correlated with 
temperature, showing that the local temperature 
anomalies in the Bay Area are significantly influenced 
by the El Niño-Southern Oscillation (ENSO) cycle. The 
influence of precipitation on the local temperature 
anomalies was limited, however. Finally, although 
there was not a statistically significant link between 
the atmospheric CO2 concentration at Mauna Loa, 
HI and the temperature anomalies in the Bay Area, 
the consistent increase in CO2 concentration could 
have had an impact on the overall increase in annual 
temperature anomalies from 1971 to 2016. 

INTRODUCTION
	 The	 El	 Niño-Southern	 Oscillation	 cycle	 (ENSO)	 is	 a	
recurring	but	 irregular	pattern	of	 oceanic	 temperatures	and	
atmospheric	conditions	in	the	east-central	Equatorial	Pacific	
(1),	which	have	large	impacts	on	rainfall	and	weather	patterns	
in	North	America.	When	ENSO	is	in	its	“warm”	phase	(El	Niño),	
warmer	than	normal	ocean	temperatures	are	observed	in	the	
Pacific	Ocean.	Similarly,	when	ENSO	is	in	its	“cold”	phase	(La	
Niña),	cooler	than	normal	ocean	temperatures	are	seen	in	the	
Pacific	Ocean	 (2).	 In	 times	when	ENSO	 is	 “neutral”,	 ocean	
temperatures	in	the	Pacific	Ocean	are	approximately	average	
(3).	ENSO	also	has	a	large	impact	on	a	global	scale,	for	when	
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timescales.	 It	 is	 used	 to	 quantify	 measured	 precipitation	
as	 a	 “standardized	 departure	 from	 a	 selected	 probability	
distribution	 function	 that	models	 the	 raw	precipitation	 data”	
(12).	 A	 larger	 positive	 value	 indicates	 greater	 than	 median	
precipitation	 (wetter	 than	 normal	 conditions)	 while	 more	
negative	values	indicate	less	than	median	precipitation	(13).
	 On	 a	 larger	 scale,	 anthropogenic	 climate	 change	 over	
the	past	 150	 years	has	warmed	 the	Earth	 “at	 a	 rate	20-50	
times	 faster”	 than	 Earth’s	 fastest	 natural	 climate	 change	
events,	 and	 its	 effects	 have	 been	 felt	 around	 the	 world	
(14).	 This	 results	 in	 not	 only	 habitat	 loss	 for	 plants	 and	
animals	 living	 within	 ecosystems	 globally	 but	 also	 severe	
infrastructure	 damage	 due	 to	 more	 frequent	 events	 such	
as	 tropical	 storms,	extreme	heat	events,	and	disruptions	 to	
oceanic	circulation	which	are	exacerbated	by	global	warming	
(15).	Yet	all	of	these	catastrophic	events	have	occurred	when	
global	 surface	 and	 ocean	 temperatures	 have	 only	 warmed	
by	 approximately	 0.85	 °C	 from	 1880	 to	 2012,	 while	 by	
2100	 the	global	 surface	 temperature	 is	 likely	 to	 further	 rise	
above	 1.5	 °C	 relative	 to	 what	 it	 was	 in	 1880	 (16).	 A	major	
portion	of	 this	warming	can	be	directly	attributed	 to	human	
greenhouse	 gas	 emissions,	 specifically	CO2,	which	 had	 an	
exponential	growth	with	 “a	doubling	 time	of	about	30	years	
since	the	beginning	of	the	industrial	revolution	(~1800)”	(17).	
	 This	study	examined	whether	 the	 local	 temperatures	of	
the	San	Francisco	Bay	Area	have	a	 relationship	with	 three	
factors	 over	 the	 past	 46	 years:	 1)	 the	 large-scale	 ENSO	
cycle,	 2)	 the	 Bay	 Area’s	 precipitation	 levels,	 and	 3)	 the	
atmospheric	CO2	 concentrations.	We	 found	 that	 from	 2013	
to	2016	there	was	a	 large	correlation	between	a	historically	
significant	 high	MEI/low	SPI	 and	warm	annual	 temperature	
anomalies	 within	 the	 Bay	 Area,	 and	 that	 in	 general	 the	
influence	of	ENSO	was	a	 lot	 stronger	 than	 the	 influence	of	
precipitation	on	 the	 temperatures	within	 the	Bay	Area	 from	
1971	 to	2016.	 In	addition,	 from	1971	 to	2016,	 rising	annual	
mean	CO2	concentrations	were	also	correlated	with	the	rise	
in	 annual	 mean	 temperature	 anomalies	 in	 the	 Bay	 Area.

RESULTS
	 To	determine	the	trend	in	temperature	fluctuations	within	
the	 Bay	 Area	 over	 a	 46-year	 period,	 we	 calculated	 and	
analyzed	the	annual	temperature	anomalies	in	three	locations	
in	 the	 Bay	 Area:	 San	 Francisco,	 Los	 Gatos,	 and	 Oakland.	
From	1971	to	2016,	we	observed	a	large	spike	in	the	annual	
temperature	anomaly	in	2014,	with	Los	Gatos,	San	Francisco,	
and	Oakland	 possessing	 temperature	 anomalies	 of	 1.4	 °C,	
2.3	°C,	and	1.5	°C,	respectively	(Fig. 1).	We	then	performed	
a	paired	t-test	on	the	average	monthly	high/low	temperatures	
in	2014	in	all	three	locations	against	the	1971–2016	average	
to	 determine	 the	 significance	 of	 the	 temperature	 increase	
(Table 1).	 Paired	 t-test	 results	 showed	 that	 the	 average	
monthly	temperatures	in	2014	all	had	p-values	below	the	0.05	
threshold,	rendering	the	temperature	anomalies	significant	in	
the	historical	context	(Table 1).

 In	order	to	better	visualize	the	average	warming	over	the	
46-year	period	for	each	individual	city,	the	annual	temperature	
anomalies	 for	 each	 station	 were	 placed	 in	 three	 separate	
graphs,	and	trendlines	were	generated	by	Google	Sheets	for	
each	graph	 (Fig. 2).	An	example	of	San	Francisco’s	annual	
temperature	 anomaly	 bar	 graph	 along	 with	 its	 trendline	 is	
shown	in Figure 2A.	There	was	a	warming	trend	observed	in	
San	Francisco,	Los	Gatos,	and	Oakland	from	1971	to	2016,	
with	the	average	warming	(measured	using	the	endpoints	of	
each	cities’	annual	temperature	anomaly	trendline)	being	1.34	
°C,	0.63	°C,	and	0.32	°C,	respectively (Fig. 2).	By	averaging	
these	 values,	 the	 average	 warming	 for	 the	 Bay	 Area	 from	
1971	to	2016	was	found	to	be	0.76	°C.	

Fig 1: Combined	 annual	 temperature	 anomaly	 vs.	 year	 for	 San	
Francisco,	Los	Gatos,	and	Oakland	(1971-2016).	In	general,	negative	
annual	 temperature	 anomalies	 are	 observed	 towards	 the	 start	 of	
the	study	period,	while	positive	annual	 temperature	anomalies	are	
observed	 towards	 the	 end	 of	 the	 study	 period.	 There	 is	 a	 large	
increase	in	the	annual	temperature	anomaly	from	2013	to	2014	across	
all	three	locations,	with	positive	temperature	anomalies	persisting	for	
all	three	locations	until	the	end	of	the	study	period	(2016).

Table 1: Paired	 t-test	 results	 for	 average	 monthly	 high/low	
temperature	 in	 2014	 vs.	 the	1971-2016	mean	 (San	Francisco,	 Los	
Gatos,	 and	 Oakland).	 All	 of	 the	 p-values	 calculated	 are	 below	
the	 statistical	 significance	 threshold	 (p=0.05),	 meaning	 the	 2014	
temperature	anomalies	are	significant	in	the	historical	context.

Fig 2: Annual	temperature	anomaly	vs.	year	for	San	Francisco	(A),	
Los	 Gatos	 (B),	 and	 Oakland	 (C)	 with	 trendlines	 (1971-2016).	 The	
trendlines depict an increasing annual temperature anomaly across 
all	three	locations	within	the	study	period.	A	large	increase	in	annual	
temperature	 anomaly	 from	 2013	 to	 2014	 is	 also	 seen	 in	 all	 three	
locations,	with	positive	temperature	anomalies	persisting	for	all	three	
locations	until	the	end	of	the	study	period	(2016).
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	 The	relationship	between	Bay	Area	annual	temperature	
anomaly	 (Ta),	 annual	mean	MEI,	 and	annual	mean	SPI	 on	
both	a	short	and	long	timescale	was	examined	by	plotting	the	
three	 variables	 onto	 one	 graph,	 along	with	 their	 three-year	
moving averages (Fig. 3).	The	first	 two	variables	showed	a	
large	 positive	 correlation	 (r	 =	 0.73	 between	 the	 three-year	
moving	 averages	 of	 Ta	 and	MEI),	with	 Ta	 trailing	MEI	 until	
1997,	after	which	the	MEI	began	trailing	Ta	(Fig. 3).	For	the	
individual	annual	data	points,	the	correlation	coefficient	r	was	
lower,	equaling	0.53	between	Ta	and	MEI	(Fig. 3).	Ta	showed	
somewhat	of	an	inverse	correlation	with	SPI	(r	=	-0.17	between	
the	three-year	moving	averages	of	Ta	and	SPI),	becoming	the	
most	 pronounced	 in	 the	 period	 after	 2009.	 The	 correlation	
coefficient	 for	 the	 individual	 data	 points	 between	 Ta	 and	
SPI	was	also	 lower	 than	 their	 three-year	moving	averages,	
equating	to	-0.05.	From	2013	to	2016,	there	was	a	clear	spike	
then	gradual	decrease	in	Ta	which	exceeded	its	fluctuations	
during	 the	 entire	 1971–2016	 period,	 the	 SPI	 decreased	 to	
record	lows	historically,	and	the	MEI	crossed	the	0.5	El	Niño	
threshold	on	a	steep	ascending	trend.	

	 To	observe	the	correlation	between	Ta	and	annual	mean	
CO2	concentration,	 the	 two	variables	were	plotted	onto	one	
graph	(Fig. 4).	We	noticed	a	steady	rise	in	CO2 concentration 
between	1971	and	2016.	There	was	a	strong	(R²	>	0.99)	trend	
of	CO2	increase	at	~1.73	ppm/year,	while	the	Ta	also	showed	
a	 trend	 of	 increase	 at	 ~0.03	 deg/year	 but	 with	 a	 lower	 R²	
value	(0.157,	Fig. 4).

DISCUSSION
	 Our	 research	 question	 concerned	 the	 relationship	
between	 temperature,	 MEI,	 SPI,	 and	 atmospheric	 CO2 
from	 1971	 to	 2016	 in	 the	San	 Francisco	Bay	Area.	 Annual	
temperature	 anomalies	 for	 the	 three	 cities	 (San	 Francisco,	
Los	Gatos,	Oakland)	as	well	as	for	the	Bay	Area	were	derived	

from	monthly	 high/low	averages	 in	 this	 time	period,	 annual	
mean	MEI	data	was	converted	 from	bimonthly	data,	annual	
mean	SPI	was	converted	from	monthly	averages,	and	annual	
mean	CO2	was	converted	 from	monthly	averages.	A	paired	
t-test	was	performed	on	the	2014	warm	temperature	anomaly	
data	 in	 order	 to	 determine	 if	 it	was	 statistically	 significantly	
warmer	than	the	average	temperature	anomaly	baseline	over	
the	 entire	 study	 period,	 the	 trendlines	 in	 Figure 2	 helped	
to	 quantify	 the	 growth	 in	 each	 of	 the	 three	 cities’	 annual	
temperature	 anomalies	 from	 1971	 to	 2016,	 and	 the	 three-
year moving averages in Figure 3	helped	 to	create	a	more	
accurate	 representation	of	 the	 long	 term	 trends	of	Ta,	MEI,	
and	SPI	by	eliminating	short	term	variabilities.

	 During	 the	2014	 temperature	spike	and	 the	2013–2016	
warm	period,	 the	Bay	Area	annual	mean	MEI	crossed	over	
the	 0.5	 threshold,	 which	 indicates	 an	 El	 Niño	 event,	 as	 Ta	
jumped	 above	 historic	 levels;	 however	 this	 relationship	
wasn’t	significant,	as	previous	periods	including	1981–1983,	
1985–1987,	and	1989–1992	had	annual	mean	MEI	levels	at	
or	exceeding	2013	to	2016’s	levels	without	a	similar	spike	in	
Ta (Fig. 3).	 In	 addition,	 the	 relatively	 high	MEI	 levels	 from	
1981	 to	 1983	 was	 also	 paired	 with	 a	 record	 SPI	 increase	
from	0.26	to	0.86	from	1981	to	1983.	This	positive	correlation	
between	the	MEI	and	SPI	could	be	explained	by	the	fact	that	
the	El	Niño	(larger	MEI	values)	brought	more	precipitation	to	
the	 Bay	 Area,	 reflected	 by	 the	 relatively	 large	 positive	 SPI	
values.	However,	 as	 the	MEI	 increased	 from	1985	 to	 1987	
and	1989–1992,	the	SPI	was	always	between	-0.2	and	0.2,	
indicating	that	there	wasn’t	an	increase	in	precipitation	levels	
concurrent	with	the	El	Niños	during	these	time	periods.	Taken	
together,	 the	 behavior	 of	 the	 MEI	 and	 SPI	 during	 the	 four	
periods	of	 time	(1981–1983,	1985–1987,	1989–1992,	2013–
2016)	verifies	the	claim	made	by	the	University	of	California	
Museum	of	Paleontology	and	Tom	Di	Liberto	 that	 the	exact	
effect	 which	 ENSO	 has	 on	 precipitation	 levels	 in	 Northern	

Fig 3: Bay	 Area	 annual	 temperature	 anomaly	 (1971-2016,	 green	
squares),	annual	mean	SPI	(1971-2016,	grey	stars),	and	annual	mean	
MEI	 (1971-2016,	 orange	 stars)	 and	 their	 corresponding	 three-year	
moving averages (green, grey, and orange solid lines, respectively). 
A	 large	 increase	 in	both	Ta	and	MEI	 from	2013-2014	 is	seen,	and	
both	variables	were	positive	from	2014	to	2016.	Meanwhile,	a	large	
decrease	in	SPI	is	observed	in	both	2013	and	2015.

Fig 4: Bay	 Area	 annual	 temperature	 anomaly	 (1971-2016,	 green	
squares	and	solid	line)	and	Mauna	Loa,	HI	annual	mean	CO2	(1971-
2016,	blue	stars	and	solid	line).	Annual	mean	CO2 increased linearly 
within	 the	 study	 period,	 with	 the	 correlation	 coefficient	 R2 being 
0.9921.	Ta	also	 increased	within	 the	study	period	but	with	a	 lower	
R2	(0.157).
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California	is	highly	variable	(5,6).	In	addition,	it	is	seen	that	a	
high	MEI	alone	does	not	necessarily	directly	correlate	year	to	
year	with	large	warm	temperature	anomalies	(r	=	0.53),	but	it	
is	still	worth	noting	the	relatively	high	correlation	coefficient	(r	
=	0.73)	between	these	two	variables	on	a	three-year	moving	
average,	 indicating	that	the	MEI	has	a	relatively	 large-scale	
influence	overall	on	Ta	within	the	Bay	Area.
	 The	 Bay	 Area	 annual	 mean	 SPI	 values	 from	 2013	 to	
2016	provided	another	piece	of	the	puzzle	for	the	temperature	
spike.	During	this	time	the	SPI	dropped	to	two	of	the	lowest	
values	observed	within	 the	46-year	study	period	(-0.52	and	
-0.39)	 in	 2013	 and	 2015	 respectively (Fig. 3), rendering it 
historically	significant.	This	also	shows	that	it	was	the	driest	
period	 over	 the	 46	 years	 studied.	 The	 historical	 drought	
combined	 with	 the	 warming	 El	 Niño	 trend	 may	 have	 been	
a	main	contributor	to	the	historic	warm	Ta	(Fig. 3).	The	SPI	
itself,	however,	did	not	show	a	strong	correlation	with	Ta	given	
the	fact	that	the	correlation	coefficient	between	the	three-year	
moving	averages	of	SPI	and	Ta	was	-0.17	and	that	there	was	
an	 even	 smaller	 correlation	 coefficient	 between	 the	 annual	
averages	(r	=	-0.05).
	 Overall,	the	2014–2016	historically	high	Ta	in	conjunction	
with	 the	 historically	 low	 Bay	 Area	 annual	 mean	 SPI,	 both	
of	 which	 had	 simultaneous	 magnitudes	 which	 were	 not	
otherwise	 seen	 during	 the	 46-year	 time	 period	 analyzed	
in	 this	 study,	 support	Diffenbaugh	 et	 al.	 (2015)’s	 claim	 that	
rising	 temperatures	 increase	 the	 likelihood	 of	 extreme	 dry	
conditions	 and	 warm	 temperatures	 coinciding	 with	 each	
other	(11).	However,	this	relationship	seems	variable,	as	the	
relationship	between	precipitation	and	Ta	was	rather	weak	(r	
=	-0.05	without	the	three-year	moving	average	and	r	=	-0.17	
with	 the	 three-year	moving	 average).	 Also,	 there	 seems	 to	
be	 a	 pattern	 of	 severe	 droughts	 concurrent	 with	 warm	 El	
Niño	 resulting	 in	 significant	 warm	 anomalies,	 such	 as	 the	
ones	observed	 from	2013	 to	2016.	 In	addition,	ENSO	 (with	
a	three-year	moving	average)	had	an	overall	large	observed	
impact	 on	 the	 three-year	 moving	 average	 Ta,	 while	 SPI	
possessed	a	weak	 impact	on	both	 the	year-to-year	and	 the	
three-year	 moving	 average	 Ta.	 These	 results	 indicate	 that	
the	Bay	Area	 temperature	 is	 significantly	 influenced	 by	 the	
oceanic	system	and	that	 this	 influence	could	be	on	a	multi-
year	scale,	while	 the	relationship	between	precipitation	and	
temperature	anomalies	is	not	as	coherent	(Fig. 3).	In	addition,	
we	concluded	that	ENSO’s	effect	on	precipitation	within	the	
Bay	Area	is	variable.	
	 The	 annual	 mean	 CO2	 concentration	 at	 Mauna	 Loa	
showed	a	persistent	 increase	between	1971	and	2016	(Fig. 
4).	While	there	was	no	CO2	spike	corresponding	to	the	2014	
Ta	 spike,	 the	 upward	 trend	 of	 CO2 concentration may still 
explain	the	overall	increase	in	the	annual	average	temperature	
and	Ta	during	the	study	period	(Fig. 4)	through	its	role	as	a	
greenhouse	gas.	Thus,	the	overall	average	increase	of	0.76	
°C	 in	 the	 Bay	 Area	 may	 be	 attributed	 to	 the	 CO2-induced	
greenhouse	effect;	however,	it	is	still	important	to	remember	
that	 other	 properties	 such	 as	 evaporative	 cooling	 levels	

and	 energy	 storage	 capacity	 also	 have	 an	 impact	 on	 local	
temperatures in addition to incoming and outgoing solar 
radiation.
	 The	 next	 steps	 for	 this	 research	 include	 incorporating	
more	data	series	for	both	temperature	and	SPI	for	additional	
cities	 in	 the	 Bay	 Area	 to	 ensure	 that	 the	 results	 are	 truly	
representative	of	the	Bay	Area,	as	well	as	extending	the	time	
period	examined	to	further	reduce	potential	bias	which	may	
be	present	in	the	current	study	period.	An	examination	of	the	
impacts	 that	 droughts	 may	 impose	 on	 Northern	 California	
ecosystems	would	allow	us	to	better	understand	the	current	
situation	 of	 both	 urban	ecosystems	within	 the	Bay	Area	as	
well	as	 the	coniferous	 forests	which	dominate	 the	Northern	
Californian	landscape,	including	how	much	of	an	effect	rising	
temperatures	and	increasing	droughts	in	the	future	will	have	
on	the	health	of	these	ecosystems.

MATERIALS AND METHODS
	 In	this	study	we	focused	on	the	San	Francisco	Bay	Area	
(located	in	Northern	California),	specifically	the	three	cities	of	
San	Francisco,	Los	Gatos,	and	Oakland,	CA.	The	time	period	
that	was	selected	spanned	from	1971	to	2016,	encompassing	
the	period	of	the	2012–2016	extreme	drought	in	California	as	
well	 as	 the	 forty	 years	 preceding	 the	 unprecedented	warm	
and	 dry	 period.	 Three	 weather	 stations,	 one	 from	 each	 of	
these	 cities,	 with	 the	 most	 complete	 temperature	 records	
were	selected,	and	monthly	average	high	 (Th)	and	 low	 (Tl)	
temperatures	from	each	of	these	three	stations	were	recorded	
on	 a	 spreadsheet.	 This	 data	was	 provided	 by	 the	National	
Centers	 for	 Environmental	 Information	 (NCEI)	 of	 National	
Oceanic	 and	 Atmospheric	 Administration	 (NOAA)	 through	
their	Climate	Data	Online	tool	(18).	
	 The	 monthly	 average	 high	 and	 low	 temperatures	
reflected	the	mean	fluctuation	between	the	daily	high	and	low	
temperature	in	the	month	for	each	station.	For	our	study,	such	
small-scale	fluctuations	had	to	be	filtered	out	 to	help	reveal	
any	 long-term	 trend	 in	 the	 temperature	 data.	 Therefore,	
annual	 temperature	 anomalies	 (Ta)	 for	 all	 three	 locations	
were	calculated	using	Equation	(1)	below:	

	 Ta(j)	=	Ty(j)	-	Tb	 	 	 	 (1)

Here	 j	 represents	 the	 year	 and	 ranges	 from	 1971	 to	 2016,	
Ty	represents	the	average	annual	temperature	for	each	year,	
and	 Tb	 represents	 the	 46-year	mean	 temperature.	 Tb	was	
calculated	based	on	Equation	(2)	below:

      
 	 	 	 	 (2)
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And	Ty	was	calculated	based	on	Equation	(3):

 	 	 	 	 (3)

where	i	represents	the	month	and	ranges	from	1	to	12	and	Tm	
represents	the	average	monthly	temperature	and	was	defined	
as	follows:

	 Tm(i)	=	[Th(i)	+	Tl(i)]/2	 	 	 	 (4)

	 By	calculating	the	average	of	the	monthly	high	and	low	
temperatures	(Eq.	4),	the	diurnal	variabilities	were	removed	in	
the	monthly	mean	temperature	(Tm).		Calculating	the	average	
of	 the	monthly	mean	over	 the	year	 (Eq.	3)	 further	 removed	
seasonal	 variabilities	 in	 the	 annual	 mean	 temperature	 (Ty)	
and	subsequently	the	annual	temperature	anomaly	(Ta).		By	
using	Ta	instead	of	monthly	temperature	anomalies,	potential	
climate-related	trends	can	be	better	presented.	Ta	was	then	
converted	into	units	of	°C		to	ensure	consistency	and	was	used	
for	the	remainder	of	this	study.	In	addition,	a	paired	t-test	was	
performed	on	the	average	monthly	high/low	temperatures	in	
all	 three	 locations	 for	 2014	against	 the	1971–2016	average	
to	 determine	 the	 significance	 of	 the	 temperature	 increase	
(Table 1). 
	 The	endpoints	 of	 each	 trendline	 (which	was	generated	
along	with	the	graphs	in	Google	Sheets)	were	used	to	calculate	
the	magnitude	of	warming	for	each	of	the	three	locations	(Fig. 
2).	 The	 three	 warming	 magnitudes	 were	 then	 averaged	 to	
represent	the	average	warming	in	the	Bay	Area.	Afterwards,	
the	annual	temperature	anomalies	for	all	three	stations	were	
averaged	to	get	Ta,	which	was	more	representative	of	the	Bay	
Area’s	regional	climate.	
	 Next,	 bi-monthly	 data	 of	 the	 MEI	 (9)	 for	 1971–2016,	
supplied	 by	 the	 NOAA	 Physical	 Sciences	 Laboratory	 (19),	
was	 placed	 on	 another	 spreadsheet.	 The	 bi-monthly	 MEIs	
were	then	averaged	for	each	year	to	obtain	the	annual	mean	
MEI.	
	 In	addition,	monthly	SPI	 (13)	data	 for	each	of	 the	 three	
stations	for	the	period	1971–2016	was	taken	from	the	Climate.
gov’s	Drought	Risk	Atlas	 (20),	 then	 averaged	 to	 obtain	 the	
annual	mean	SPI	for	the	Bay	Area.	This	ensured	that	annual	
averages	were	present	 throughout	all	of	 the	datasets.	Then	
Ta,	 annual	 mean	MEI,	 and	 annual	 mean	 SPI	 were	 plotted	
onto	the	same	continuous	graph	(Fig. 3).	A	three-year	moving	
average	was	applied	to	all	three	data	sets	to	smooth	out	some	
short-term	natural	variabilities	and	to	help	better	visualize	any	
long-term	trends	and	relationships	in	the	data.
	 Finally,	monthly	average	atmospheric	CO2 concentration 
(ppm)	 from	Mauna	Loa,	HI,	which	also	 spanned	 from	1971	
to	 2016,	 was	 imported	 onto	 a	 spreadsheet.	 This	 data	 was	
provided	by	the	Scripps	CO2	Program	(21).	Since	CO2 tends 
to	 be	 well	 mixed	 when	 it	 is	 emitted	 into	 the	 atmosphere	
globally	 (22),	 the	 concentrations	 of	 the	 gas	 measured	 at	

Mauna	 Loa	would	 therefore	 be	 representative	 of	 the	 levels	
within	 the	Bay	Area	on	 the	annual	scale.	The	annual	mean	
CO2	concentrations	were	calculated	using	Equation	(5):

     (5)

where	 i	 represents	 the	 month,	 and	 ranges	 from	 1-12	 and	
Cm	represents	the	monthly	average	CO2	concentration.	CO2 
concentrations	were	placed	into	a	continuous	graph	with	Ta	
(Fig. 4).
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