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and RNA into the 20-letter language of proteins by mapping 
each three-nucleotide codon to its corresponding amino acid. 
As tRNAs bind within ribosomes, the amino acid is transferred 
to the nascent polypeptide chain; this is how proteins are 
synthesized. 
	 A common way to measure gene expression is through 
mRNA sequencing. However, mRNA levels do not neces-
sarily reflect protein abundances, as some mRNAs may be 
translated at higher rates than others. Thus, there may be siz-
able discrepancies between mRNA abundances, which are 
relatively easy to measure, and true protein levels, which de-
termine phenotype (1). A technique known as ribosome pro-
filing measures translation of transcripts, not just transcript 
abundance, and may be a better tool to measure gene ex-
pression (2). Assuming protein degradation is roughly equal 
for all proteins, protein abundances should be closely related 
to translation and thus measurable by ribosome profiling (2). 
	 Ribosome profiling captures a snapshot of the active ri-
bosomes in a population of cells. Ribosomes are bound to a 
small piece of the mRNA strand that they are translating – ap-
proximately 30 bases. These stretches of mRNA are essen-
tially protected by ribosomes, which can be frozen in place if 
a drug called cycloheximide is added. When a ribonuclease 
is added to the extracted cell lysate, it degrades all mRNA 
except the ribosome-protected “footprints”. These footprints 
are subsequently converted into a DNA library that can be 
deep-sequenced. Through this deep-sequencing, the abun-
dance of these different ribosome-protected fragments is 
measured. To date, most implementations of ribosome pro-
filing have assumed that all footprints mapping to the same 
mRNA are equivalent – in other words, if two transcripts have 
the same density of ribosome footprints as measured by ribo-
some profiling, it is assumed that they are being translated 
at the same rate. However, closer investigation reveals that 
the distribution of footprints varies dramatically between tran-
scripts (2). Here, we investigate these differences to further 
our understanding of ribosome profiling data and, more gen-
erally, translation in mammalian cells.
	 Translation, as opposed to transcription, is particularly 
important to study in settings where amino acids may be lim-
ited. This is because amino acids are direct substrates for 
translation (and not transcription). Should synthesis at some 
transcripts respond differently to amino acid starvation than 
synthesis at other transcripts, RNA sequencing would be 
an insufficient method of sequencing; ribosome profiling is 
needed. One example of an amino acid-deprived tissue is 
pancreatic tumor tissue, which is densely fibrotic. Amino acid 
scarcity limits protein synthesis. Each time a ribosome binds 
to an mRNA and initiates translation then becomes critical in 
terms of resource allocation. Too much translation initiation 
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SUMMARY
Protein synthesis is a process central to all life 
on Earth, including mammalian cells. During this 
process, ribosomes attach to mRNA strands and 
translate them into proteins using amino acids. Under 
stress (for example, when the supply of circulating 
amino acids has been disrupted by tissue injury), 
ribosomes can stall. Ribosome profiling, a technique 
that creates a snapshot of active ribosomes in a cell 
by sequencing ribosome-protected mRNA fragments, 
captures a snapshot of ribosomes along transcripts 
and can detect such stalling events. This method has 
also revealed that the patterns of ribosomes along 
transcripts can vary from transcript to transcript in 
a manner that has not yet been explained. Here, we 
analyzed ribosome profiling data from amino acid-
starved pancreatic cancer cells to explore whether 
the pattern of ribosome distribution along transcripts 
under normal conditions can predict the degree of 
ribosome stalling under stress. We hypothesized that 
ribosomes would stall more along “elongation-limited” 
transcripts that have fewer ribosome footprints near 
the start and stop codons than “initiation-limited” 
transcripts that have a large fraction of footprints at the 
start codon. Indeed, we found that ribosomes in amino 
acid-deprived cells stalled more along elongation-
limited transcripts. By contrast, we observed no 
relationship between read density near start and stop 
and disparities between mRNA sequencing reads and 
ribosome profiling reads. This research identifies 
an important relationship between read distribution 
and propensity for ribosomes to stall, although more 
work is needed to fully understand the patterns of 
ribosome distribution along transcripts in ribosome 
profiling data. 

INTRODUCTION
	 Protein synthesis is fundamental to life as we know it. It 
is ongoing in all mammalian cells, even those that are not 
growing and dividing. Because life is dynamic, proteins 
need to be synthesized continuously to accommodate 
cellular needs in a changing environment. Proteins are also 
biomolecules and are thus somewhat reactive. They can be 
damaged over time, so many proteins must be degraded and 
replaced. Proteins are synthesized by ribosomes, which use 
messenger RNA (mRNA) as a template. Within ribosomes, 
transfer RNAs (tRNAs) translate the 4-letter language of DNA 
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can lead to ribosome stalling, which is toxic to the cell. Thus, 
although a ribosome may be bound to a specific mRNA, the 
translation of that mRNA may be paused because of the lack 
of amino acids in the cell. This inappropriate pausing due to 
lack of resources is referred to as ribosome stalling. The tran-
scripts that are paused at start or stop codons are not consid-
ered to be stalled as they are not pausing in direct response 
to a lack of amino acids (3, 4)
	 In these amino acid-depleted environments, a specific ki-
nase, GCN2, becomes much more important to the protein 
synthesis process. GCN2 kinase activity is stimulated by 
binding to uncharged tRNAs, which become more abundant 
under amino acid deprivation. GCN2 suppresses translation 
initiation in amino acid-deficient conditions, thus limiting pro-
tein synthesis at the beginning rather than during elongation. 
It adapts cells to an environment where essential amino ac-
ids levels are low by suppressing initiation of gene translation 
rather than allowing stalling in the middle of translation (5). 
	 Because of the connection between ribosome stalling, 
translation initiation, and amino-acid allocation, we hypoth-
esized that there are two general kinds of transcripts: tran-
scripts whose rate of translation is primarily limited by trans-
lation initiation rate – “initiation-limited” transcripts – and 
transcripts whose translation is primarily limited by elongation 
– “elongation-limited” transcripts. These two kinds of tran-
scripts can be identified using ribosome profiling data, which 
shows how many ribosomes are bound near start codons and 
how many are bound elsewhere. We expected that more stall-
ing events would occur in elongation-limited transcripts rela-
tive to initiation-limited transcripts. Our analysis suggests that 
this is at least somewhat true. To confirm whether elongation-
limited transcripts have more than the expected number of ri-
bosomes, we compared the number of total reads mapping to 
these transcripts from ribosome profiling and RNA sequenc-
ing datasets. We expected that elongation-limited transcripts 
would have a higher ratio of ribosome profiling reads to RNA 
sequencing reads than their initiation-limited counterparts, 
but we found no evidence that this is the case. This relation-
ship between read distribution and propensity for ribosomes 
to stall can be important in gathering a better understanding 
of the inner workings of a mammalian cell, but more research 
needs to be done in this area to fully understand the implica-
tion of this relationship.

RESULTS
	 To investigate whether patterns of ribosome profiling 
reads along transcripts can predict ribosome stalling, we 
used a dataset previously generated using a pair of murine 
pancreatic cancer cell lines (WT and Gcn2 knock-out) derived 
from spontaneously arising mouse tumors (6). The cell lines 
were cultured in amino acid-rich or leucine-free medium 
for one hour before ribosome footprints were extracted and 
analyzed by ribosome profiling (7). 
	 The data from these experiments can be summarized either 
by gene (each row contains read counts in various samples for 
one gene) or by codon (each row contains read counts for that 
specific codon). Because only transcripts with many proper 
reads are useful when attempting to understand the patterns 
of reads along transcripts, it was necessary to filter out genes 
with i) misannotated start sites and ii) insufficient read depth – 
meaning there were too few reads to conduct proper analysis. 
We focused first on the data summarized by codon. To focus 

on transcripts with sufficient read density, we used only the 
top 1000 transcripts in terms of ribosome profiling reads out 
of the original ~10,000; this effectively removed all transcripts 
with insufficient read depth. Though high read density could 
be attributed to longer genes, these top 1000 transcripts had 
similar lengths to the original gene set (560.151 vs. 617.755), 
minimizing gene length as a confounding factor (Figure 1). 
We found that of these transcripts, many had improperly 
annotated start and stop sites. For example, no reads map 
to the annotated start of Sdc4 (Figure 2B, right). This could 
be because the start codon is truly misannotated or because 
data processing that generated the data frame that we started 
with was faulty. It also could be because ribosomes move so 
quickly over the first few codons of Sdc4 that the start codons 
are not detected by ribosome profiling. Using genes like 
Sdc4 in an analysis involving read density at start as a key 
parameter confounds such an analysis because their start 
sites are likely to be misannotated. Of the 1000 top genes, 
752 had correctly annotated start sites (Figure 2A, left), and 
427 had correctly annotated stop sites (Figure 2A, right). 
After removing all but proper start and stop sites, we were left 
with 320 genes from the original top 1000 genes.
	 With a list of correctly annotated genes, we were able 
to make comparisons between the fraction of reads near 
the termini of the open reading frame and other aspects of 
the data. We took a table that included mRNA reads and 
ribosome profiling reads for each gene and measured the 
density of ribosome profiling reads near the start and stop 
codons by finding the percentage of all reads that mapped to 
one of the first five codons or last five codons. As an example, 
we delineate these boundaries for S100a6. S100a6 has 
quite a high fraction of reads mapping near the termini of the 
open reading frame, with obvious accumulation of ribosome 
footprints at both start and stop codons (Figure 3). 
	 To identify a potential relationship between accumulation 
near start and stop sites and stalling in amino acid-deficient 
conditions, we analyzed data from the Gcn2 knock-out (KO) 
cells. GCN2 prevents stalling by slowing translation initiation 
when amino acids become scarce (5). When plotting Gcn2 
KO cell stalling against footprint accumulation near transcript 
termini in the amino acid-rich condition, we found that there is a 
modest but significant correlation between the two (Figure 4). 
The amino acid-rich condition serves as a baseline indicator 
of how much accumulation near the termini occurs when a cell 

Figure 1: Gene lengths of the full gene set and the top 1000 
genes selected for analysis. Histogram showing that gene lengths 
are similar in the original data set (left) and the truncated data set 
(right).
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is in a healthy state. We used this condition because it reveals 
the ribosome binding pattern in cells that are unperturbed by 
nutrient deprivation. As more transcripts pause at start and 
stop sites, the stalling we observed in leucine-starved Gcn2 
KO cells decreased. Thus, GCN2 may be more important 
in protecting ribosomes that translate transcripts which are 
primarily elongation-limited rather than transcripts which are 
initiation or termination-limited.
	 We further analyzed this data by isolating the reads 
near the start and performing a correlation analysis. Here, 
the correlation was much clearer (Figure 4A). Though the 
Pearson Correlation coefficient is relatively low (R2 = 0.0422), 
the statistical significance is clear as p = 0.0008. However, 
when this analysis was performed using only the reads near 
stop, there was no clear correlation with a low R2 value and 
no statistical significance (p = 0.638) (Figure 4B). This shows 
that transcripts with a higher fraction of ribosomes pausing 
at the start codon tend to have less stalling, while ribosomal 
pausing near the stop codon does not correlate with ribosomal 

stalling.
	 We also conducted a similar analysis of the Gcn2 WT 
cell line and determined that there was no correlation (R2 
= 0.0019) between reads near stop or start and ribosomal 
stalling in these cells (Figure 4C). This indicates that the 
statistically significant correlation between the fraction of 
reads at the start site of Gcn2 KO cells and ribosomal stalling 
arises only in cells without GCN2.
	 We next sought to investigate the differences in fractional 
read counts (reads per kilobase million) across sequencing 
experiments. More specifically, we noticed that for any 
given gene in any given cell line and condition, the number 
of reads per million mapping to that gene sometimes varied 
dramatically between RNA sequencing and ribosome profiling 
– an effect which, to our knowledge, has not been explained. 
A read number that is much lower in ribosome profiling 
compared to RNA sequencing could potentially indicate that 
a transcript is translated at a rate much lower than average, 
and vice versa. We hypothesized that this behavior related 
to the pattern of ribosome footprints along transcripts. 
Leveraging the analysis above, we decided to compare the 
fraction of reads mapping near start and stop codons and the 
discrepancies between the absolute number of sequencing 
reads in RNA sequencing versus ribosome profiling. To do 
this, we calculated the difference between the ribosome 
profiling reads and the RNA sequencing reads for each gene 
in the amino acid-replete conditions (sum of WT and KO) and 
plotted that against the read density near start and stop. This 
analysis revealed that the fraction of reads near transcript 
termini has no obvious relationship to the difference between 
ribosome profiling reads and RNA sequencing reads: the R2 
value is low (R2 = .036) and not statistically significant (p = 
.1364) (Figure 5).  Thus, the dramatic discrepancies that 
we observe between RNA sequencing reads and ribosome 
profiling reads cannot be explained by this study. 

DISCUSSION
	 In this study, we explored the patterns of ribosome 
distribution along transcripts and how they relate to the 

Figure 3: Graphical representation of start five and last five 
groups used in calculation. The example gene plotted is S100a6, 
and the data shown is from GCN2 WT cells in amino acid-rich 
medium.

Figure 2: Figure 2: Correct and incorrect stop and start sites 
visualized. A) Histogram of start and stop codon site distribution. 
B) Plot of a correctly annotated start site (Ier3) and an incorrectly 
annotated start site (Sdc4). C) Plot of a correctly annotated stop site 
(F2r) and an incorrectly annotated stop site (Erh).
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degree of ribosome stalling under amino acid deprivation 
in pancreatic cancer cells. First, we isolated a subset of 
highly expressed transcripts whose start and stop sites were 
properly annotated. We used this subset of genes to explore 
the idea that transcripts with higher read densities near start 
and stop codons (initiation-limited transcripts) might be less 
prone to stalling than transcripts where the majority of reads 
map in the middle (elongation-limited transcripts). Indeed, we 
determined that stalling occurs more often along transcripts 
which have a low fraction of reads mapping near start codons. 
The strength of the relationship was not strong, suggesting 
that there are other important factors at play. We found that 
this relationship was only true in amino acid-starved Gcn2 KO 
cells (not Gcn2 WT cells), and we found no such relationship 
between stalling and reads mapping near stop codons. In 
addition, we observed no relationship between read density 

near the termini and disparities between mRNA sequencing 
reads and ribosome profiling reads.
	 The idea that initiation-limited transcripts are less prone to 
stalling than elongation-limited transcripts sheds light on the 
inner workings of translation in mammalian cells. However, 
given that the correlation is quite weak, there may well be 
other factors that contribute to making transcripts prone to 
stalling. For example, each species of mRNA has a unique 
localization within cells. Additionally, the density of all 
required factors for translation around each mRNA species, 
such as charged tRNAs, initiation factors, and elongation 
factors, may be different. Further, secondary structures within 
mRNAs may lead to intentional pauses to allow the protein 
to fold or the mRNA to be translocated to the endoplasmic 
reticulum, for example; such mid-transcript pauses would 
be read out as stalling events, contributing to noise in this 
data set. Finally, stalling could be the result of irregularities 
in sample preparations rather than real biological stalling. 
In other words, ribosomes could “slip” after cells are lysed, 
creating the appearance of stalling (3). To truly understand 
stalling events, further investigation accounting for these 
kinds of factors is required. Alternatively, deeper and higher 
quality ribosome profiling data may enable better analyses 
without consideration of all of these factors.
	 We also analyzed whether there exists a relationship 
between the difference between ribosome profiling reads 
and RNA sequencing reads and the degree of ribosome 
accumulation near the termini. We found that the ribosome 
profiling data we analyzed does not support a connection 
between these two phenomena. Thus, the origins of both 
the variation in the patterns of ribosome footprints along 
transcripts and the variation between reads per million 
between RNA sequencing and ribosome profiling cannot be 
addressed by the results of this study. Further research is 
required to better understand these mysteries. Because this 
experiment excluded a large number of genes, it is possible 
that, if more than just ~350 genes were included in such an 
analysis, the results could vary. In order to include more genes, 
the experimental aspects of the ribosome profiling protocol 
must also be improved, or otherwise deeper sequencing is 
needed.

Figure 5: Ribosomal profiling reads compared to RNA 
sequencing reads. Differences between ribosome profiling reads 
and RNA sequencing reads for each gene are plotted against the 
fractions of reads near the start and stop codons of each of those 
genes. No apparent relationship was observed.

Figure 4: Ribosomal profiling reads compared to fraction of reads near transcript termini in both KO and WT cell lines. Ribosomal 
profiling reads in GCN2 KO cells after one hour of leucine deprivation is plotted against fraction of reads near start codons (A) and stop codons 
(B). We repeated this analysis only for start codons in GCN2 WT cells (C). We measured the fraction of reads near start and stop in amino 
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	 Another experiment to supplement this analysis would 
be to repeat the above analysis in different cell lines. This 
analysis solely focused on murine pancreatic cancer cell 
lines. However, a similar experiment could be performed 
using a variety of different cell lines, including human cell 
lines originating from different tissues.  This would reveal the 
way in which different types of cells respond to amino-acid 
deprivation, and consequently, the way ribosome distribution 
can affect stalling in different cells.
	 An experiment involving the drug harringtonine could also 
prove interesting. Harringtonine, another protein synthesis 
inhibitor, stalls ribosomes only at the start. If harringtonine is 
added to cells a few minutes before lysis, ribosomes would 
accumulate at start codons but “run off” the rest of transcripts. 
If cells are lysed and ribosome profiling is conducted at a 
series of time points after harringtonine addition, one could 
calculate their speed in a transcript-specific manner (8). 
Per-transcript elongation rates could be instrumental in 
interpreting ribosome profiling data. Eventually, we hope to 
understand ribosome profiling data well enough to translate it 
into per-transcript protein synthesis rates, and this work was 
one step in that direction. 

MATERIALS AND METHODS
	 The computational analysis in this experiment was done 
using the computer programming and modeling language, 
R. Specifically, we used the R package dplyr and the ggplot 
function. 

Data Generation
	 The experiment below was repeated in WT cells and cells 
in which Gcn2 was knocked out. Each of these cell lines were 
propagated in amino acid-rich conditions, then switched to 
either amino acid-rich medium (+AA) or identical medium 
lacking the essential amino acid leucine (-Leu). Both media 
were supplemented with 50 g/L bovine serum albumin, 
which allows the leucine-starved cells to synthesize protein 
– albeit at a much slower rate – by taking up this albumin 
from the medium and degrading it within lysosomes (6). 
Leucine deprivation is a model for amino acid deprivation as 
a whole and enables cell growth, unlike complete amino acid 
deprivation (3). After an hour in their respective media, cells 
were lysed in the presence of cycloheximide, a commonly 
used protein synthesis inhibitor, mRNA-bound ribosomes 
were extracted, and ribosome profiling libraries were prepared 
and sequenced (7). In addition, standard mRNA sequencing 
was performed using these lysates. The read metric used 
was reads per kilobase million (RPKM).

Determining Correct Start Sites
	 To systematically identify genes with potentially 
misannotated start sites, we exploited the fact that ribosomes 
typically accumulate at start codons. We reasoned that 
the absence of such an accumulation may indicate a 
misannotation. We calculated the average number of reads 
at each codon in a gene transcript by taking the sum of 
reads in the Aminoacyl-tRNA site (A-site) of the ribosomes 
and dividing by the gene length in codons. We mapped the 
A-site by using the psite function of the plastid package (9). 
We then identified the first codon of every gene with more 
reads than this “codon average”. Because it is expected that 
there is a peak in reads at the start, the first codon where 

the A-site reads are greater than the codon average should 
be the second codon in the sequence and the codon before 
that should be the true start codon. The reason that the first 
codon with many reads is the second codon, as opposed to 
the first, is because the start codon sits in the Peptidyl-tRNA 
site (P-site) during translation initiation, and when the start 
codon is in the P-site, the second codon is in the A-site. In 
contrast, we expect stalling to occur at the A-site, which is 
where charged tRNAs bind when available. We also removed 
any gene whose first codon (presumably the start codon) was 
not one of the four possible start codons (AUG, CUG, GUG, 
and UUG).

Determining Correct Stop Sites
	 Similarly, for some transcripts, the stop codon was 
misannotated. For example, Erh has an improperly annotated 
stop site, giving the inaccurate appearance of nearly half the 
gene as having little to no reads, while the true stop codon was 
further upstream (Figure 2C). This data, which we removed, 
gives the impression that there are leucine codons where no 
stalling happens and thus interferes with the analysis. We 
removed all genes without an accumulation of ribosomes 
at the annotated stop codon as well as those with incorrect 
codons in that position (the stop codons are UAA, UAG, and 
UGA).

Removing Incorrect Start and Stop Sites
	 To remove the incorrect start and stop sites, we created 
a threshold of A-site ribosome profiling reads. This threshold 
was the average codon reads across the gene. We then 
compared each codon starting from the front and back until 
we reached a codon where the A-site reads was greater than 
the average codon reads. This became the second site due to 
the start codon binding directly to the P-site. From the back, 
the first codon with A-site reads above the average became 
the stop codon. Any genes that did not match these criteria 
were eliminated. Any determined start or stop codons that did 
not have the correct base pairs were also eliminated. This 
left us with 752 correct start sites and 427 correct stop sites. 
The intersection of these two sets left use with 320 out of the 
original 1,000 genes.

Calculating GCN2 Knock-out stalling
	 To calculate the KO stalling (Figure 4), we determined the 
two leucine codons where stalling most likely occurred (CUC, 
CUU). Then we calculated the ratio of reads of these codons 
from the KO cell line and the WT cell line by dividing the KO 
reads by the WT reads. This gave us a normalized value for 
the quantity of stalling in each gene after GCN2 was knocked 
out.

Calculating p-values
	 To calculate the significance of the R2 values for the plots in 
Figure 4 (plotting GCN2 KO stalling against fraction of reads 
at start or stop), we first generated 5000 randomized samples 
of the KO stalling data. We then calculated the R2 value for 
each sample (randomized KO stalling against original fraction 
of reads at start or stop) and determined the fraction of the 
5000 that were lower than our original R2 value. If that fraction 
(the p-value) was lower than 0.05, then we considered it 
statistically significant.
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