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interpolation include adaptive separable convolution (2), deep 
voxel flow (3), and bidirectional predictive network (4). Even 
with the development of convolutional neural networks on 
video frame interpolation, creating high-quality images is still 
demanding due to large instances of motion and occlusions. 
Furthermore, the methods previously mentioned are only 
applicable to specific types of video, which is severely limiting. 
For example, optical flow estimation relies on calculating the 
difference of velocity between the camera and objects in 
the scene, so it does not work well in two-dimensional (2D) 
animations because of the lack of depth and perspective. The 
more generalized approach we will delve into further is depth-
aware video interpolation.
	 Depth-aware video interpolation is a method that collects 
the geometrical data of a scene by tracking points in a video 
and mapping them in three-dimensional (3D) space, as shown 
in Figure 1 with the depth maps (5). The optical flows represent 
the object’s motion paths in relation to the point of view of the 
camera. All depth-aware video interpolation algorithms, albeit 
through different processes, use the geometrical data and 
motion paths to construct an interpolated frame by averaging 
the positions of objects between every two consecutive 
frames. The two implementations of this method that we will 
focus on in our experiments are the Depth-Aware video frame 
INterpolation (DAIN) model and the Super SloMo model.
	 While the DAIN and the Super SloMo models have very 
different structures, they follow the same general interpolation 
process. For every two consecutive frames, the models 
generate depth maps that assign each pixel a numerical value 
that represents how close the objects are to the camera. They 
then use the depth data to isolate the objects in the scene 
and calculate the difference between the positions and 
rotations of these objects in the two frames. At this point, the 

Building a video classifier to improve the accuracy of 
depth-aware frame interpolation

SUMMARY
With the current growth in video technology, 4K 
resolution and sixty frames per second are becoming 
the industry standards for live, pre-recorded, and 
animated footage. Although many old movies have a 
lower frame rate because of insufficient technology, 
the larger issue lies in the processing of videos. As 
videos are streamed online, the frame rate can be 
significantly impaired. So, if we can computationally 
increase the frame rate, we can dramatically 
reduce the amount of data being sent to the user. 
With the recent rising popularity, efficiency, and 
effectiveness of artificial intelligence, deep learning 
is undoubtedly the most plausible solution to this 
problem. Multiple projects have used neural networks 
to interpolate videos and improve their frame rate. 
However, since different categories of videos, such 
as two-dimensional and three-dimensional, can have 
drastically different color schemes and motion paths, 
training a single model to handle all of them leads to 
overfitting, which can be seen in current interpolation 
algorithms that are specialized to interpolate certain 
categories of videos. To combat this issue, we 
researched whether it would be possible to find a 
single method to perform frame interpolation invariant 
to the type of video inputted. In this process, we found 
several pre-existing models that performed well with 
either 2D or 3D footage, but not both; therefore, 
we hypothesized that building a video classifier to 
categorize the input video’s dimensionality would 
thus improve their accuracy. After integrating the 
classifier with two depth-aware frame interpolation 
models, we improved the average accuracy to 97.2%.

INTRODUCTION
	 As the complexities of computer science continue to 
rise, expectations for the standard of technology grow 
with it. Video quality is no exception, but it is very time 
consuming and expensive for creators to produce a high 
frame rate for their audience. Frame interpolation is a type 
of video processing algorithm that attempts to increase the 
smoothness and fluidity of videos by generating frames 
between existing ones. This was previously achieved through 
optical flow estimation (1), but more precise techniques 
are now available following the uprise in computer vision. 
Frame interpolation has garnered the attention of the deep 
learning community because of its applications, including 
frame rate upconversion, slow motion generation, and frame 
recovery. Some of the methods employed to achieve video 
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Figure 1: DAIN model video interpolation overview (5). This figure 
shows the process through which the DAIN model generates an 
interpolated frame based on depth and color information from two 
inputted frames. The model repeats this process for every two 
consecutive frames in an inputted video, producing an interpolated 
result.
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DAIN model finds the average of the positions of the objects 
in the two consecutive frames and generates a new depth 
map called the interpolated flow (as shown in Figure 2) that 
contains the predicted depth data in the interpolated frame. 
However, the Super SloMo model follows a slightly different 
process to improve accuracy and avoid artifacts (6). Instead of 
assuming linear motion in moving objects like the DAIN model 
does, the Super SloMo model uses auxiliary frames (frames 
besides the two consecutive frames, as shown in Figure 3) 
in order to better analyze the path and acceleration of the 
moving objects. The model, then, produces an image to map 
the change in position. It then uses this equation to predict 
the new position of these objects in the interpolated frame, 
rather than simply calculating the average. While this tends to 
compromise with a longer runtime, it results in a much higher 
accuracy with 3D clips than the DAIN model. After generating 
an interpolated flow, both models use the color data from the 
two consecutive frames to convert the interpolated flow into a 
colored interpolated frame.
	 Because of the key differences between the two models, 
they have a large range of accuracies for different types of 
video, so neither model is a perfect, versatile solution. The 
Super SloMo model achieved high accuracies for 3D animated 
and real time videos with its extensive optimizations, ability to 
analyze more types of motion, and use of auxiliary frames for 
reference; however, they result in unnecessary long runtimes 
and artifacts for 2D frame interpolation. The DAIN model, on 
the other hand, was created to use depth-aware interpolation 
for both 2D and 3D videos, but by trying to find a balance 
between the two while still maintaining high accuracies, their 
finished model actually interpolated 2D clips with much higher 

accuracies than with 3D clips.
	 Since both of these models are capable of interpolating 
videos of different dimensions with varying accuracies, 
they would not be ideal for use as a standard automatic 
interpolation tool across all platforms. In light of this issue, we 
sought to find out if creating a video classifier would improve 
the overall accuracy of existing interpolation algorithms. 
Since developing a classifier would utilize the strengths of 
the DAIN model (3D video) and the Super SloMo model (2D 
video) while minimizing their weaknesses, we hypothesized 
that a classifier would improve the overall accuracy of the 
two individual models. To test this hypothesis, first, we ran 
tests on the individual accuracies of the DAIN model and 
the Super SloMo model to determine their strengths and 
weaknesses. Then, we developed a video classifier and set 
it up to feed videos to either the Super SloMo model or the 
DAIN model depending on the result. Lastly, we conducted 
tests on the final model which consisted of our classifier and 
the two interpolation algorithms to determine the validity of 
our hypothesis. The findings supported our hypothesis: the 
classifier we built was able to interpolate 2D and 3D videos at 
similarly high accuracy levels.

RESULTS
	 Both the DAIN and Super SloMo models that we 
implemented in our project were pre-trained and reported 
high accuracy for the specific tasks they were tailored to 
handle.The DAIN model includes 32 layers with a LeakyReLU 
activation function that serves the purpose of determining 
which features play a key role in determining the output. We 
achieved a high accuracy of 98.6% for the 2D animations 
with this model, but it was 24.3% less accurate when dealing 
with 3D footage. The Super SloMo model, on the other hand, 
contains only 12 layers and a ReLU activation function. 
However, unlike the DAIN model, it seemed to be capable 
of interpolating either live action or animated 3D footage 
with close to 99% accuracy, but had trouble interpolating 2D 
animations, with an inadequate accuracy of 50%. 
	 From the results gathered above, we realized a 
combination of the strengths from each of the models with 
a classifier was the most effective way to determine whether 
the input video was 2D or 3D. 
	 We also collected data on our bilateral filtering algorithm 
to determine a feasible algorithm for our classifier. After 
plotting the mean squared accuracies of our filter using the 
formula in Equation 4, we realized that drawing a simple 
threshold line would work well to classify inputted videos. The 

Figure 2: DAIN model diagram. This diagram shows a visual 
representation of the neural network component of the DAIN model.

Figure 3: Super SloMo model diagram. This diagram shows a visual 
representation of the neural network component of the Super SloMo 
model, which is important in conjunction with Figure 2 since it shows 
the different approaches the Super SloMo and DAIN model use to 
interpolate videos, which leads to these varying accuracies.

Equations 1-4: Ro, Go, Bo: original Red, Green, & Blue values; Ri, 
Gi, Bi: interpolated Red, Green, & Blue values; frames: number of 
frames; width: width of the frame in pixels; height: height of the frame 
in pixels
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results of this experiment are shown in Figure 6. After building 
our classifier upon this approach, we tested it on the same 
1000-video clip dataset, containing half 2D animations and 
half 3D video clips, that we used to test the DAIN and Super 
SloMo models. As shown in Table 1, our classifier was able to 
correctly identify 92% of the videos.
	 After implementing our finished classifier into the final 
model, which included the DAIN model and the Super SloMo 
model, the average accuracy of DAIN increased to 86.8% 
and 97.2% for Super SloMo (Table 1). As shown in Table 1, 
we tested the accuracy of each individual component of our 
final model (the DAIN model, the Super SloMo model, and 
our video classifier) on several different types of videos: clips 
from 3D and 2D animations and clips from real-life camera 
footage. The “Classifier” row shows the average accuracy of 
our classifier alone on frames of videos of the listed types, and 
the “Final Model” row shows the average video interpolation 
accuracy of our final model, incorporating our classifier and 
the two depth-aware models. We calculated these accuracies 
using the metric provided in Equation 3.

DISCUSSION
	 Even given that the DAIN model is depth-aware, the 
creators trained the model on a dataset that consisted partly 
of 2D animated footage, providing an explanation for its high 
accuracy with 2D animation. Even though the dataset the 
creators used is not publicly available, we inferred that it might 
have contained too many 2D animations, most likely resulting 
in overfitting and consequently leading to lower accuracies on 
the 3D clips.
	 Meanwhile, the SuperSloMo model achieved almost half 
the accuracy of the DAIN model, which was logical because 
the Super SloMo model was designed with the intent of being 
used with 3D video clips, therefore it was trained primarily 
on 3D footage. This was further verified after reviewing 
the interpolated results of the 2D animations because we 
observed sections of the video that were distorted, enlarged, 
shrunk, and awkwardly colorized. It was obvious that the 
model was trying to detect 3D objects and depth-revealing 
color data in a 2D animation, where neither of those features 
existed.
	 Although most commercial cameras are capable of filming 
at 60 frames per second or higher, there are many barriers 
preventing this from becoming the standard, for which this 
work proposes a working solution. By combining the strengths 
of two powerful depth-aware frame interpolation models, we 
were able to create an improved model capable of interpolating 
2D and 3D video types with similar accuracies and with a 
much higher average accuracy than the two individual 
models. Manually selecting which interpolation algorithm 
to use for every video was not feasible, considering how 
over a billion hours of videos are watched daily on YouTube 
alone, according to their published statistics. However, the 
implementation of our algorithm is able to improve the overall 
quality of videos for viewers and creators alike.
	 Furthermore, our classifier categorizes images as 2D 
or 3D a large majority of the time, but it does not have the 
accuracy required to be a proficient solution. For example, if 
we fed in 1,000,000 videos into our classifier, around 80,000 
of those videos would be incorrectly classified, which would 
have severely impacted the video quality if we did not use 
two depth aware methods. With a rise of ongoing study in 

Figure 4: Bilateral filter on real-life image. This figure shows an 
example of our classifier on a real-life image where the effect of the 
filter is easily discernible and would lead to a high mean squared 
error. 

Figure 5: Bilateral filter on cartoon image. This figure shows an 
example of our classifier on a 2D cartoon image where the difference 
between the input and output is not as noticeable. Since the before 
and after images are very similar, the mean squared error would be 
low, and our classifier would classify it as 2D.

Table 1: Average accuracy based on model used and type of video 
interpolated (including final model).

Figure 6: MSE plot for bilateral filter on 100 images with threshold 
line. This figure shows the mean squared error between the inputted 
image and the output of our bilateral filtering algorithm for 2D 
animated images, 3D animated images, and real-life images. The 
threshold line shows the value our model uses to classify these 
images, and as the figure shows, this approach works for a good 
majority of them.
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the field of 2D/3D image classification, we hope to research 
other methods in order to fine-tune our own bilateral filtering 
method to increase our accuracy, allowing us to implement 
an interpolation algorithm built for 2D animation. While our 
classifier is not yet exact enough to meet the standard for 
licensing or mass distribution, we could deploy our technology 
as a platform for users who seek video interpolation for their 
personal use. Regardless of our current limitations, the 
practical use of our classifier is valuable for anyone looking to 
improve the quality of videos and could be a major asset for 
production companies in the future.

MATERIALS AND METHODS
	 To set up our workflow, we utilized the available pre-trained 
DAIN and Super SloMo models and set them up to interpolate 
a given set of videos to collect data on accuracy and runtime. 
To test the accuracies, we converted sixty 10-second videos 
(twenty 2D animations, 3D animations, and 3D real-time 
videos each) ranging from 60 frames per second (fps) to 15 
fps, so we had inputs for the models and control groups to 
compare the final results of interpolation. After running both 
models on each of these videos, we then wrote a program 
to go through every frame of the interpolated result and the 
original 60 fps video, and then compared the RGB values of 
every pixel in the interpolated frame with its corresponding 
pixel in the frame from the original 60 fps video to assess the 
accuracy of each interpolation. 
	 We initially planned to count how many pixels had the 
exact same RGB values, but realized that the human eye 
would not be capable of noticing very minor differences in 
RGB values. After conducting further research, we realized 
that out of the 16,777,216 different RGB values, humans 
are incapable of seeing 6/16 of the possible colors, due to 
the differences in the individual RGB gradations and human 
color perception that lead to error. Furthermore, the average 
human eye can only distinguish the remaining 10,000,000 
values only when they are placed right next to each other 
(7). However, the compared RGB values in our tests were 
not adjacent, meaning it didn’t apply to our color evaluation, 
and the range of error could be more than the standard 10/16. 
Thus, we devised an algorithm that considered RGB values 
as correct so long as the sum of the differences between the 
red, green, and blue color values for each pair of pixels was 

no more than four digits. We decided on this threshold after 
running multiple trials because it resulted in a high-enough 
variance for the accuracies of the model, and therefore we 
were able to categorize our models. RGB values lower than 
four resulted in accuracies close to 0%, while values over 
four resulted in almost 100% accuracies, so four was the 
reasonable middle ground that still provided us with ample 
RGB values. Equation 3 expresses a mathematical model 
for this algorithm.
	 After running this test, we were able to demonstrate the 
superiority of the DAIN model versus the Super SloMo model 
for 2D animations, while the Super SloMo model resulted in 
higher accuracies than the DAIN model for 3D videos.
	 In order to fulfill our objective of creating a single system 
that can interpolate all types of videos for multiple purposes, 
we would need an efficient video classifier capable of 
classifying videos as either 2D or 3D without compromising 
on runtime. Since 2D videos tend to have well-defined 
outlines and no noise (random pixel variation in brightness 
and color that are usually seen in real time footage), we 
decided to extract a frame from each video and apply a 
bilateral filtering algorithm that increases contrast at edges 
and blurs sections with high noise. Our classifier could then 
compare the doctored image with the original and classify the 
video based on the difference. We determined that this was 
an appropriate threshold for the following experiments.
	 We relied on bilateral filtering, a technique that adjusts the 
intensity of each pixel according to the properties of its nearby 
pixels using Gaussian blurs (8), to create an animated filter, as 
seen in Figure 4. These blurs reduce noise and randomness 
in images, which visibly alter real-life images and 3D cartoons 
because they lack solid fills but contain noise and gradients. 
Since 2D animation usually consists of well-defined outlines 
and solid fills, we conjectured that bilateral filtering would alter 
2D images much less than it would for 3D cartoons and live 
action frames. Figures 4 and 5 show the difference between 
the effect of bilateral filtering on cartoons and its effect on 3D 
images. While Figure 4, a real-life image, shows a dramatic 
difference between the input image and bilateral filtering 
output, Figure 5, a frame from a 2D animation, has minimal 
visible difference between the input and output.
	 However, bilateral filtering usually works best on grayscale 
images since Gaussian blurs manipulate the color values 
of surrounding pixels to conform to the pixel being altered. 
Therefore, for color images with a large variety of hues, the 
effectiveness of the algorithm would decrease greatly. To 
counter this issue, we decided to divide the image into smaller 
regions, each one containing only one color family. To maintain 

Figure 7. Model diagram of our classifier. This figure is a visual 
representation of our classifier, including a visualization of our 
bilateral filtering algorithm. 

Figure 8. Our model diagram with the Classifier, DAIN model, and 
Super SloMo model. This figure provides a visualization of our entire 
model, outlining the process from an inputted video to an interpolated 
result.
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the fast runtimes, we used the flood fill algorithm. This method 
is usually used to recursively fill a single-colored section of an 
image with another color. In our case, we used the algorithm 
to recursively scan the image and isolate families of colors 
to prep regions of the photo for bilateral filtering. Afterwards, 
we would apply Gaussian blurs on each of these sections 
separately, resulting in a smooth and simplified image.
	 Based on the difference between the original and filtered 
image, which was calculated using the mean squared error 
formula (Equation 4), we were able to classify the images as 
either 2D or 3D.
	 After conducting an experiment with 100 random images 
(half of which were frames from 2D animations and the 
other half from 3D videos) and plotting our results (the mean 
squared errors), we realized that the 3D images consistently 
had a considerably higher mean squared error than the 2D 
images (Figure 6). Upon further analysis, we determined the 
mean squared error of 22,147 was the optimal threshold to 
distinguish between 3D images and 2D images, as most of 
the values above this number were 3D and the numbers below 
were 2D. With this threshold, we were able to successfully 
classify videos as either 2D or 3D based on their mean 
squared error values.
	 Since the model deals with videos rather than images 
and we did not want to compromise runtime by running the 
classification algorithm on each individual frame, we decided 
to take three random frames from each video and run the 
algorithm on the frames with the largest diversity of color 
families through our aforementioned altered flood fill algorithm. 
This ensured that we would not end up with an image that 
was neither 2D nor 3D, such as a frame consisting of only 
one color. We would then feed the video to either the 2D or 
3D interpolator depending on the result of our classification 
algorithm. 
	 Our completed model involves an input layer that is sent 
through the classifier, which then sends it to either the Super 
SloMo model or the DAIN model depending on the result, as 
mentioned in the Materials and Methods section. The video 
is lastly processed through the proper network (Figure 8) and 
produces an output with a higher frame rate.
	 To test the accuracy of our finished model, we used the 
same formula (Equations 1-3) to confirm that the addition of 
the classifier significantly improved the accuracy.
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