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originating neuron after stimulating the dopamine receptors 
of the receiving neuron. However, cocaine binds to the 
dopamine transporters that mediate this return, interfering 
with the recycling process and generating dopamine buildup 
(3).
 Cocaine intoxication has many short- and long-term 
side effects and can be detrimental to physical and mental 
health. Short-term effects usually appear instantaneously 
after one dose and include sensations of euphoria, alertness, 
hypersensitivity, and paranoia (2). Cocaine intoxication can 
also cause constricted blood vessels, irregular heart rate, 
and increased blood pressure (2). Long-term effects are more 
severe, such as reduced blood flow to the gastrointestinal 
tract, cardiovascular toxicity, and increased risk of stroke (4). 
The inherent danger of cocaine is that after individuals have 
repeated exposure to the drug, the body starts to adopt a 
dependency on the substance. After repeated use, the brain’s 
reward system becomes less sensitive to dopamine to adjust 
to the increasing buildup in the synaptic space. Therefore, the 
brain needs an increasing amount of dopamine to reach the 
same “highs,” potentially encouraging users to take higher 
doses of cocaine to compensate (5). 
 Due to the severity of cocaine addiction, individuals who 
seek treatment have multiple treatment options like cognitive 
behavioral therapy, contingency management, therapeutic 
communities, and community-based recovery groups, all of 
which are psychosocial procedures (2). However, considering 
the addictiveness of cocaine, these strategies are not always 
the most effective, with many cocaine abuse programs 
experiencing high drop-out rates and facilitating inadequate 
periods of abstinence for their patients (6). Furthermore, 
psychosocial procedures may be less successful due to the 
ongoing pandemic, with many programs like in-person group 
therapy transitioning to an online space or becoming obsolete 
due to social distancing guidelines (7). In fact, the isolation 
and stress of the COVID-19 pandemic have increased drug 
overdose deaths to 81,000 in the United States, the highest 
number of mortalities ever recorded in a year (8). The effect 
of COVID-19 on drug abuse emphasizes the need for an even 
more robust set of treatment options for cocaine-addicted 
individuals.
 Previous studies on how genetics relates to cocaine 
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pharmaceutical target for cocaine-addicted individuals

SUMMARY
 Cocaine is a highly addictive stimulant that 
induces the buildup of dopamine in the brain, which 
over-stimulates the body’s reward system. Overdose 
deaths related to cocaine have been steadily increasing 
since 2014, with existing addiction treatments 
having limited capabilities. Therefore, the purpose 
of this investigation was to analyze the differentially 
expressed genes related to cocaine addiction and the 
cellular pathways they are associated with to expand 
potential targets for pharmacological therapies.
 We used the dataset GSE54839 from the National 
Center for Biotechnology Information (NCBI) database 
to investigate the RNA expression differences between 
groups of chronic cocaine abusers and drug-free subjects. 
In our analysis, we split 60 samples into 2 test groups of 
30 from an originally triplicated dataset. We identified 
about 370 significantly expressed genes (p-value < 5 
x 10-4). We categorized these genes as upregulated or 
downregulated genes using String-dB. We performed 
further enrichment testing using Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene Ontology 
(GO) analyses.
 In this dataset, we identified the Tumor Necrosis Factor 
(TNF) KEGG pathway as the most prominently upregulated 
pathway in cocaine-addicted individuals. Because of this, 
we believe that TNF pathway proteins have the potential to 
be pharmaceutical targets for treating cocaine addiction. 
However, the existing medications that mediate TNF 
activity mainly target autoimmune diseases, thus not 
guaranteeing that a protein could directly address cocaine 
addiction. Future research should further characterize 
the TNF pathway’s efficacy as a pharmaceutical target.

INTRODUCTION
 In 2019, cocaine-related overdose deaths rose to 15,883 
in the United States, with fatalities increasing since 2014 (1). 
Cocaine is a highly addictive drug that increases dopamine 
levels in the brain, which stimulates the body’s reward system 
and feelings of pleasure, resulting in a “high.” Cocaine 
produces this “high” by causing a buildup of dopamine in the 
synaptic cleft between neurons, which causes responding 
neurons to receive increased dopamine signals (2). Normally, 
dopamine is transported back from the synaptic cleft to its 
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abuse have shown that cocaine addiction is a heritable 
trait, with heritability around 65% in females and 79% in 
males (9). Specific genetic sequences like dopamine beta-
hydroxylase and neuron-specific vascular protein genes have 
been linked to cocaine addiction (9). Furthermore, scientists 
have been experimenting with gene therapies, specifically 
injecting modified butyrylcholinesterase (BChE) genes 
into cocaine-addicted mice to produce enzymes that split 
the drug’s molecules into harmless byproducts (10). These 
enzymes reduce the intensity of cocaine’s euphoric effects 
and theoretically lower an addicted individual’s chances of 
relapsing. However, because such therapies are unlikely to 
be developed into viable treatments due to technological and 
ethical concerns, other options are being explored to a further 
extent (9). 
 One such treatment option is the use of pharmaceuticals 
like dopamine agonists and glutamatergic medications to curb 
the addictiveness of cocaine (6). With dopamine agonists, 
the goal is for the medication to target the same receptors 
as cocaine, resulting in the same “high” with the reduced 
addictiveness of the agonist medication. However, many 
dopamine agonist trials addressing cocaine abuse have poor 
retention rates among participants, and these treatments 
have varying degrees of efficacy (6). On the other hand, 
glutamatergic medications decrease the activity of the brain’s 
dopamine reward system - the drawback being that this effect 
might encourage cocaine-addicted individuals to take even 
higher doses to compensate for the reduced stimulation (6). 
Due to these issues, a pharmacological solution to cocaine 
addiction has yet to be approved for usage. 
 In this study, our goal was to assess the RNA expression 
differences related to cocaine abuse, and instead of identifying 
specific genetic sequences, we looked at the cellular 
pathways. We hypothesized that our analysis would reveal 
expression differences between cocaine-addicted and normal 
individuals. To investigate these expression differences, we 

analyzed the publicly accessible dataset GSE54839 from the 
National Center for Biotechnology Information (NCBI). The 
dataset came from a study that investigated the difference 
in gene expression regulating transcription, chromatin, 
and dopamine cell phenotypes in the human post-mortem 
midbrain between chronic cocaine abusers and drug-free 
subjects (11). The purpose of our investigation was to identify 
the enriched functions in this dataset’s cocaine-addicted 
individuals based on whole-RNA expression patterns in an 
effort to expand the potential targets for current and future 
pharmacological addiction therapies. 

RESULTS
Differential gene expression analysis
 Due to a lack of time and resources to collect samples and 
conduct an experiment, we used publicly available dataset 
GSE54839 from NCBI. We chose this dataset because it had 
human (Homo sapiens) subjects and was conducted using 
expression profiling by array. When performing the analysis in 
the analysis software Gene Expression Omnibus (GEO2R), 
we divided the samples into two groups: the “cocaine” or 
“control” group. We chose these as our test groups because it 
was the only variable besides “cause of death” that changed 
throughout the samples. We decided not to choose “cause 
of death” due to its variability and lack of a control group. 
Since the samples in the value distribution were uniform, we 
concluded that outliers were not present (Figure 1).  
 Out of all the 48,760 genes in the dataset, we only 
identified and analyzed 369 in this paper. The rest of the genes 
did not meet the p-value cut-off of 5 x 10-4 and were deemed 
statistically insignificant. We then separated the significant 
genes into those upregulated or downregulated in the test 
group of cocaine-addict samples by their logFC values (Figure 
2). Positive logFC values corresponded to upregulated genes 
and negative logFC values to downregulated genes. We did 
not use a logFC cut-off for this experiment because all the 

Figure 1: The gene expression from cocaine and control subjects did not contain any outliers. X-axis: the identification labels of the 
RNA mid-brain samples from NCBI dataset GSE54839. Y-axis: Normalized log-transformed values of microarray data representing gene 
expression level intensities. The value distribution graphic compares the relative gene expression levels of various mid-brain samples from 
dataset GSE54839. The green boxes represent the samples from cocaine addicted individuals and the purple boxes represent the samples 
from the control. Since the gene expression levels of all the samples were uniform, there were no outliers to exclude from the dataset (11).
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significant genes had already been isolated (p-value < 5 x 
10-4). Of the 369 significant genes, 207 were downregulated, 
and 162 were upregulated. In addition, the logFC for 
downregulated genes ranged from -0.9046 to -0.1037. The 
logFC values for the upregulated genes ranged from 0.1194 
to 1.1825.

Enrichment testing: String-dB and KEGG pathway 
analysis
 We used the String-dB database to map out protein-
protein interactions between all 369 differentially expressed 
genes of interest (Figure 3) (12). The most prominent Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, 
sorted from least to greatest false discovery rate, were 
cocaine addiction, amphetamine addiction, fluid shear 
stress, atherosclerosis, the oxytocin signaling pathway, 
herpes simplex infection, and the Tumor Necrosis Factor 
(TNF) signaling pathway (13-16). Cocaine and amphetamine 
addiction being the top KEGG pathways was expected given 
the nature of our samples and were not considered for our 
analysis. To better understand the regulated molecular 
pathways, we decided to investigate whether these prominent 
KEGG pathways would appear within solely upregulated 
or downregulated String-dB maps. We sought to identify 
a pathway in which a significant portion of its proteins was 
either enhanced or diminished, making it easier for potential 
pharmaceuticals to regulate such processes adequately.
 In order to find prominent KEGG pathways, we mapped 
out the 162 upregulated and 207 downregulated genes in 
String-dB (Figures 4A and 4B, respectively). Since the 
upregulated String-dB map yielded KEGG pathways with 
much lower false discovery rates, we decided to concentrate 
on the upregulated genes. Out of all the pathways, the TNF 
signaling pathway cluster had the lowest false discovery rate 
out of the enriched pathways of upregulated genes (Table 1). 
This gene cluster included 8 genes in a network of 108 genes 
(Figure 5). Due to its significance and low false discovery 
rate, we chose the TNF gene cluster for further analysis. 

Enrichment Gene Ontology (GO) analysis: 
 When we conducted String-dB analysis on the 
upregulated genes, there were 370 Biological Processes/
Gene Ontology (GO) terms, with a p-value cut-off of < 5 x 
10-4. The top GO processes were Negative Regulation 
of Biological Processes, Response to Cytokine, Cellular 
Response to Cytokine Stimulus, and Regulation of Apoptotic 
Process (Table 2).

Common GO and KEGG pathway proteins:
 The most notable GO process related to the KEGG TNF 
Signaling Pathway was cell surface signaling with 7 out of 
8 genes shared with the pathway. The next most prominent 
was the cytokine GO process in which 6 out of 8 genes were 
shared between the pathway and GO process. 

Figure 2: Upregulation and downregulation of significantly 
expressed genes. X axis: log2 fold change representing a ratio 
of a gene’s expression levels in the mid-brain samples of cocaine-
addicted individuals over individuals in the control. Y axis: -log10 
P-value representing statistical significance. Volcano plot of the 
significantly expressed genes (p-value cut-off of 0.05) in the dataset 
GSE54839, allowing us to visualize the divergence of significantly 
upregulated and downregulated genes. Every dot represents a 
significant gene, with blue dots being downregulated genes and with 
red dots being upregulated genes in cocaine-addicted individuals. 
Since the volcano plot generation in our analysis software GEO2R 
depended on an adjusted p-value, the p-value cut-off of 0.05 was 
converted to an adjusted p-value cut-off of 0.066. We obtained 
this conversion by taking the adjusted p-value of the significantly 
expressed gene with the highest p-value, since p-value and adjusted 
p-value are proportional to each other. This ensured we visualized 
the same exact genes (11). 

Figure 3: Protein-protein interactions of significantly expressed 
genes. String-dB, an analytical tool, mapped all the proteins of the 
significantly expressed genes of dataset GSE54839 (p-value cut-off 
of 0.05) and their interactions with each other. Each colored, circular 
node represents a protein that has been significantly expressed in 
cocaine-addicted individuals. The lines between each node indicate 
protein-protein interactions, with thicker lines suggesting a stronger 
interaction. The String-dB map, along with the program’s analysis, 
gives insight into what proteins are related to each other and what 
pathways/biological processes they take part in (12). 
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Figure 4: Protein-protein interactions of significantly (a) upregulated genes and (b) downregulated genes. String-dB, an analytical 
tool, mapped upregulated and downregulated proteins of significantly expressed genes from dataset GSE54839. A p-value cut-off of 0.05 
determined whether a gene from the dataset was significantly expressed or not in cocaine-addicted mid-brain samples. We further separated 
the genes using logFC, with positive logFC values corresponding to upregulated genes and negative logFC values to downregulated genes. 
The protein symbols of these upregulated and downregulated genes were then inputted into String-dB, where separate (a) upregulated and 
(b) downregulated String maps were generated. Each colored, circular node represents a protein that has been significantly expressed in 
cocaine-addicted individuals. The lines between each node indicate protein-protein interactions, with thicker lines suggesting a stronger 
interaction. The String-dB map, along with the program’s analysis, reveals differences in the protein interactions and pathways between 
upregulated and downregulated proteins (12).
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DISCUSSION
 While the original investigators of this data set focused 
on the gene expression differences regulating transcription, 
chromatin, and dopamine cell phenotypes, we wanted to 
identify additional cellular functions affected by cocaine 
usage (11). Our analysis indicated that the TNF signaling 
pathway was upregulated in cocaine-addicted individuals. 
This pathway related to many biological processes, including 
cell surface signaling and cytokine response, as discovered 
in previous studies (17, 18). Preceding research also linked 
the TNF signaling pathway to neuronal degradation and 
inflammation (19, 20). Additionally, the expression of the TNF 
signaling pathway induced the degradation of certain nuclear 

receptor transcription factors, such as Retinoid-X-Receptors 
(RXRs) (19). These RXRs play a central role in dopaminergic 
signaling, dopamine-mediated locomotor activity, and reward 
processing in the brain’s striatum (19). Thus, the TNF pathway 
may hold a crucial position in inhibiting a person's natural 
dopamine response, increasing the addictiveness of cocaine 
and dependency on the substance.
 Identifying the TNF signaling pathway could lead to 
pharmaceuticals or other medical treatments that specifically 
target the pathway's proteins. These treatments would 
solve current psychosocial cocaine therapies' unreliability 
while providing patients with a wider array of recovery 
options. The most promising pharmaceutical medicines for 
addressing cocaine addiction revolve around dopamine 
agonists; however, targeting proteins in the TNF pathway that 
reduce dopamine-mediated activity and increase dopamine 
tolerance may prove more effective in decreasing a user’s 
cocaine intake (5). Furthermore, since the TNF pathway is 
linked to negative effects such as neuronal degradation and 
inflammation, perhaps its proteins can be targeted to address 
such effects as well (19, 20).
 Existing medicines like adalimumab, certolizumab pegol, 
etanercept, golimumab, and infliximab already target the 
TNF pathway and inhibit its activity, though they are mainly 
used to treat autoimmune diseases and largely target the 
immune system (21). These anti-TNF biologics can cause a 
few adverse effects, including a weakened immune system, 
a variable expression of TNF proteins, and an exacerbation 
of some diseases like multiple sclerosis and congestive heart 
failure (21). Although the majority of these medications do 
not cross the blood-brain barrier (BBB), research into the 
use of BBB-penetrating TNF inhibitors for the treatment of 
Alzheimer’s disease is promising for the development of a 
pharmaceutical cocaine abuse therapy (21, 22). These BBB-
penetrating medications would then eliminate the need for 
an intrathecal injection, which would involve an injection into 
the spine and would be an excessive solution to the already 
treatable problem of cocaine abuse.
 Unfortunately, there are some limitations to this 
research on the potential uses of the TNF signaling pathway. 
The potential ramifications caused by pharmaceuticals 
manipulating the body's natural processes might not be 
worth the treatment benefits they provide to cocaine-addicted 
individuals, especially considering some of the side effects 
of existing TNF-targeting medications (21). There is also no 
guarantee that a pharmaceutical targeting TNF proteins will be 
specific enough for the sole use of treating cocaine addiction. 
Due to the robustness of the TNF pathway, it might be difficult 
to find a protein that specifically relates to cocaine usage. 
Another limitation to this paper is that we focused on one 
dataset from a single study. As a result, some other essential 
pathways and significant genes may have been overlooked. 
This research may also not be reproduced in a larger sample 
size. Furthermore, the original study had more thorough and 
flexible analysis methodologies, like being able to reduce 

Table 1: The 10 KEGG pathways with the lowest false discovery 
rate from the significantly upregulated String-dB map. The left-
most column lists the KEGG IDs of each pathway. The right-most 
column lists the false discovery rate of the specific pathway (12).

Table 2: The 10 biological GO processes with the lowest false 
discovery rate from the significantly upregulated String-dB 
map. The left-most column lists the GO-Term IDs of each pathway. 
The right-most column lists the false discovery rate of the specific 
pathway (12).
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variance through a matched pairs experimental design, while 
we had to adapt to GEO2R’s more rigid analysis pipeline (11). 
Without some of these variance controls, our results may 
have been skewed. Future research may include analyzing 
larger groups of people, living samples in model organisms 
like mice, or non-midbrain samples to test the robustness of 
the TNF pathway. To ensure the viability of the TNF pathway 
as a pharmaceutical target, more research on whether such a 
pharmaceutical would be small enough to cross the BBB and 
affect the brain would have to be conducted. 
 Overall, our research demonstrated a genetic correlation 
between cocaine addiction and TNF signaling pathway 
upregulation. Our analysis with GO processes and KEGG 
pathways also reinforced previous scientific findings that 
the TNF pathway plays a role in cell surface signaling and 
cytokine response (17, 18). With these roles, the TNF 
pathway potentially inhibits a person’s natural dopamine 
response, which increases their tolerance and likelihood of 
addiction (19). However, this correlation between cocaine 

addiction and the TNF signaling pathway suggests that 
possible medications targeting proteins in the pathway could 
be effective at treating cocaine addiction. A pharmaceutical 
treatment such as this not only provides more options for 
cocaine-addicted individuals but has the potential to improve 
upon the often-unreliable psychosocial programs employed 
today.

MATERIALS AND METHODS
Accessing Data
 The GSE54839 dataset from the NCBI database 
was used for this research. In our analyses, 60 samples 
were divided into two test groups, with 30 samples in each 
test group. The differential gene expression analysis was 
conducted through the analytical software GEO2R, and 
samples were divided into either the “cocaine” or “control” 
group in GEO2R. The samples of the cocaine group were 
defined first in the software.

Figure 5: Upregulated TNF signaling pathway proteins. String-dB, an analytical tool, mapped the proteins from significantly 
upregulated genes in the dataset GSE54839. We separated the significantly upregulated genes using a p-value cut-off of 0.05 and a 
positive logFC requirement, then inputted their protein symbols into String-dB to generate a String map. Each grey, circular node represents 
a protein that has been significantly upregulated in cocaine-addicted individuals. The red nodes mark the 8 TNF signaling pathway proteins 
(CCL2, CXCL10, FOS, JUN, MAP2K3, MLKL, NFKB1, VCAM1). The lines between each node indicate protein-protein interactions, with 
thicker lines suggesting a stronger interaction. The String-dB map visualizes the TNF pathway proteins and their relations with each other 
and with proteins in other pathways (12). 
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GEO2R, STRING, KEGG: 
 When performing the analysis with GEO2R, samples 
were divided into the “cocaine” or “control” group. Although 
the original dataset consisted of averaged triplicate samples, 
doing so was out of our technical capability in GEO2R, so we 
treated each triplicate as a sample. Therefore, we analyzed 
a total of 60 samples separated into two test groups of 
30. After this, a modified Student T-Test was performed to 
assess differentially expressed genes between the “cocaine” 
and “control” group using GEO2R (11). Gene set enrichment 
testing was performed using String-dB, using its “multiple 
proteins” feature. We used genes identified from the t-test 
(p-value cut-off of 5 x 10-4) as inputs. String-dB analyzes 
significant genes and visualizes their protein interactions 
in a String map. Based on the enriched genes expressed 
in the String map, the String-dB program generated lists of 
functional enrichments correlated to the chosen genes like 
GO processes and KEGG pathways. These lists gave us an 
idea of what physiological processes the enriched genes 
were a part of. 
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