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INTRODUCTION
Emodin is a natural derivative of anthraquinone, a 

polycyclic aromatic hydrocarbon derived from anthracene 
used to manufacture dyes and is typically found in various 
medicinal plants such as rhubarb, buckthorn, molds, and lichen 

(Figure 1) (1). The molecule has various therapeutic roles 
as a tyrosine kinase inhibitor, a laxative, and an anticancer 
agent (2). Emodin binds to various proteins with anticancer 
properties such as serine/threonine kinases, dual specificity 
kinases, GTPases, and proteases (3–5). Kinases are central 
to maintaining proper cellular function via turning on protein 
functions through the phosphorylation of specific amino 
acids. Serine/threonine kinases act specifically on serine 
and threonine amino acid residues on regulatory proteins, 
which leads to widespread effects through phosphorylation 
cascades. Similarly, dual-specificity kinases act as serine/
threonine and tyrosine kinases. 

Due to their role in promoting cell proliferation and 
anchorage-independent growth, the overexpression of 
the various protein kinases is typically associated with 
oncogenesis (6). Specifically, overexpression of dual-
specificity kinases can cause increased cell proliferation 
and anchorage-independent growth of cells—critical 
characteristics for tumor growth and metastasis (7). Thus, 
protein kinases serve as promising targets for future anticancer 
venues. 	The use of polymeric nanoparticles, particles that 
are 1–500 nm in length, is emerging as a promising method 
of small molecule delivery in cancer therapeutics due to 
characteristics like high biocompatibility, broad-structure 
variety, and bioimitive (imitating biological properties) 
characteristics (9). Nanoparticles represent one mode 
through which emodin may be delivered in order to maximize 
the amount of emodin that enters its target cell. Chitosan, 
a polysaccharide composed of glucosamine monomers, 
nanoparticles specifically have several advantages including 
low toxicity, high biocompatibility and biodegradability, 
stability, and site-specific drug targeting abilities (10-11). The 
molecular dynamics (MD) approach makes use of computer 
simulations to model the movement of molecules at the 
atomic level. Traditionally, this method has been utilized to 
model protein-drug complex interactions on a time course 
but has more recently been used to model nanoparticles and 
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their interactions with surrounding media. While inorganic 
nanoparticles and carbon-based nanoparticles have 
primarily been studied, polymer nanoparticle interactions 
have not been accurately predicted through the same in silico 
approaches. However, many studies are aiming to overcome 
this gap in knowledge. In one study exploring the production of 
solid lipid nanoparticles (traditionally polymer nanoparticles), 
drug entrapment efficiency was found to be more than 87% 
and showed long-term physical stability (12). In another 
study, chitosan nanoparticles were investigated to deliver 
ciprofloxacin hydrochloride. Drug entrapment efficiency was 
found to increase with increasing amounts of drug in polymer 
to drug ratios (13).  

Previous studies have investigated the binding 
mechanisms behind emodin and tyrosine kinase interactions 
(14). Due to emodin’s ability to bind to casein kinases (a type of 
serine/threonine kinase), we hypothesized that emodin would 
be able to bind to serine/threonine kinases in general. In this 
study, the specific characteristics of emodin binding to serine/
threonine kinases were identified via a variety of in silico 
methods to aid in identifying emodin’s mechanism of action 
as an anticancer agent. By identifying the specific interactions 
that would allow emodin to bind to serine/threonine kinases 
as a general class of proteins, we begin to understand the 
complex mechanism of action for emodin (15). Furthermore, 
because emodin consists of a hydrophobic core surrounded 
by polar (having an electric charge) functional groups, like 
phenols, we hypothesized that emodin would form strongly 
favorable interactions with chitosan. These interactions, in 
turn, would lead to higher entrapment efficiencies at lower 
drug to polymer ratios that increase as more drug molecules 
are added. Through investigating this hypothesis, we have 
optimized one parameter of chitosan nanoparticle synthesis, 
which is significant because it highlights that the large 
amounts of trial and error commonly associated with the 
synthesis of chitosan nanoparticles can be reduced.

RESULTS
Molecular docking

In order to model emodin’s interaction with various protein 
classes, we investigated using molecular docking, from 
which the binding scores between emodin and the different 
proteins were found. The binding scores described in this 
section represent the predicted affinity in kcal/mol between 
emodin and the proteins of interest. We used binding scores 
to rank the proteins with the intention of identifying those with 
which emodin had the strongest interaction.  Serine/threonine 
kinases were found to bind well to emodin with binding scores 
averaging approximately -8.6, in contrast to another emodin-
binding protein caspase-3, a cysteine protease, which 
only scored -5.8. In general, binding in these proteins was 
facilitated by emodin’s nonpolar interactions with the amino 
acid residues leucine and valine in the active site (Figure 
2a). Additionally, binding was also facilitated by hydrogen 
bonding between the phenols on emodin and the polar 

regions of the protein (Figure 1). Dual-specificity kinases did 
not bind well to emodin due to their differences in polarity; 
the polar regions of these kinases cannot interact with the 
nonpolar regions of emodin (Figure 2b). When bound to 
MAPK-9 and S/THPK (two kinases included in the molecular 
docking studies), emodin was found to interact with various 
residues including leucine, valine, glycine, phenylalanine, 
and threonine (L275, V158, G226, F222, and T293 in MAPK-
9; L154, V38, G31, and F35 in S/THPK) (Figure 2c-2d).  
Proteins with low-magnitude binding scores did not display 
specificity to any amino acid residues. Overall, proteins with 
high-magnitude binding scores had interactions with emodin 
primarily via leucine and valine residues. Specific proteins 
used are identified in Table 1. Additionally, emodin was found 
to bind to serine/threonine kinases in the same location as the 
adenosine of ATP as opposed to where the triphosphate binds 

Figure 2. Residues interacting with emodin. Heatmap of residues 
interacting with emodin in (a) serine/threonine kinases and (b) dual 
specificity kinases. Positive values signify nonpolar interactions 
while negative values signify polar interactions like hydrogen bonds. 
The magnitude of values represents the number of interactions of 
that specific type occurred over all structures within the class of the 
heatmap.  (c) Residues within 4 Å of emodin in MAPK-9. (d) Residues 
within 4 Å of emodin in S/THPK. 

Figure 1. Chemical structure of emodin. Emodin is composed 
of three six-membered carbon rings with three hydroxyl groups, a 
methyl group, and two carbonyl groups attached. Image generated 
using ChemDraw molecule editor.  

a) b)

c) d)
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(Figure 3). ATP plays a key role in many cellular processes 
by providing energy to fuel chemical reactions. Consequently, 
it can play a role in intracellular signaling pathways involved 
in the suppression and activation of tumor suppressor and 
activators. Due to emodin competing with ATP to bind to the 
kinase, downstream effects of serine/threonine kinases such 
as cell proliferation and differentiation may be blocked.

Molecular dynamics
We chose to run MD on MAPK-9 because it had the most 

negative binding score, which prompted further investigation 
into whether emodin can remain stable in the protein rather 
than temporarily binding strongly. Emodin remained stable in 
the binding pocket of MAPK-9 throughout the 1 ps simulation 
(Figure 4). This was enough time to allow the protein to stabilize 
and see the difference between emodin and native bound 
states. Additionally, the backbone of the protein structure 
was more stable in the presence of bound emodin compared 
to its native state bound to ATP. Consequently, emodin 
would be an effective inhibitor as the protein was stabilized 
when emodin was bound, as it is more thermodynamically 

favorable, which means it is less reactive, than its unbound 
state. Furthermore, this indicates that emodin would likely 
form competing interactions with the protein relative to ATP, 
the native substrate.                     

The fourth and fifth oxygen of emodin (located on the 
third carbon ring) are closest to MAPK-9 when bound, 
within a range of 3.6–4.0 Å, whereas the first, second, and 
third oxygens range from 5.2–7.0 Å away. The carbons of 

Figure 3. Emodin bound to S/THPK. (a) and (b) S/THPK bound 
to only emodin. (a) depicts PyMol’s ribbon model of S/THPK bound 
to emodin. (b) depicts PyMol’s surface model of S/THPK bound to 
emodin. (c) S/THPK bound to emodin and ADP. 

Table 1. Names and class of protein targets emodin was bound to during docking.

a) b) c)
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emodin are facing toward the solvent, while the oxygens and 
hydrogens are interacting with MAPK-9 through hydrogen-
bonding (Figure 5). The purpose of modeling emodin’s 
location in relation to MAPK-9 was to further understand how 
the molecule interacts with the protein.

When studying the emodin and polymer interactions, in 
both the chitosan and chitosan-PEG (copolymer) MD trials, 
a clear maximum entrapment efficiency (EE) occurred at a 
drug:polymer ratio of 0.4. Overall, the copolymer trials had 
lower EEs compared to those with chitosan. Specifically, the 
chitosan NP had a maximum EE of 65.7% while the copolymer 
NP was 60.9%, and this trend was consistent throughout 
most of the drug:polymer ratios. Furthermore, there was not 
a linear relationship between the drug:polymer ratio and EE, 
which was contrary to our hypothesis; instead, the EE quickly 
climbed to a maximum as the ratio was increased, then slowly 
decreased to a plateau (Figure 6). Equation 1 was chosen to 
model the initial increase in EE and the plateau that followed.

Downstream PyMOL analysis, a protein visualization 
pipeline, indicated that emodin relies on both hydrogen bonding 
and hydrophobic interactions to remain near the chitosan. 
This finding is consistent with emodin’s structure, as it has 
a hydrophobic anthraquinone core surrounded by phenols. 
Thus, the core participates in hydrophobic interactions, while 
the polar phenols and ketones form hydrogen bonds with the 
polar alcohols and amines on chitosan (Figure 7). 

DISCUSSION
The docking studies that we presented within this work 

showed that emodin is capable of binding to a wide variety of 
serine/threonine kinases due to the presence of a nonpolar 
binding pocket, which is assisted by hydrogen bonding. 
Because emodin has the potential to act as a competitive 
inhibitor to ATP, it suppresses serine/threonine kinase activity 
by inhibiting the phosphorylation of protein substrates (37). 
Despite this, emodin is unable to strongly bind in the pocket of 
dual-specificity kinases, which also use ATP as their source 
of phosphate for phosphorylation, because their pockets 
contain more polar residues. Our results also show that there 
is a lack of nonpolar residues since dual-specificity kinases 
have binding and allosteric sites primarily lined with polar 
amino acids. Nonpolar residues are essential for emodin 
binding to serine/threonine kinases, further supporting that 
emodin could not form stable interactions with dual specificity 

Figure 5. Position of molecular components of emodin relative 
to MAPK-9. The (a) oxygens on emodin and MAPK-9, (b) hydrogens 
on emodin and MAPK-9, (c) carbons in the 1st ring of emodin and 
MAPK-9 (d) carbons in the middle ring of emodin and MAPK-9, and 
(e) carbons in the 3rd ring of emodin and MAPK-9 are all closely 
located to the protein. 

Figure 4. RMSD of the protein backbone of MAPK-9 over 1 ns. (a) 
RMSD fluctuations of the MAPK-9 backbone free protein (control). 
(b) RMSD fluctuation of the MAPK backbone with emodin present. 

Figure 6. EE of chitosan (green) and chitosan-PEG NP (blue). 
The equation showed reasonable correlation coefficients of 0.9972 
and 0.8857, respectively.  

a) b)

c) d) e)

a)

b)
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kinases. Kinases typically function at upstream levels of 
signal transduction pathways; therefore, inhibition affects a 
multitude of downstream functions at the molecular level, 
which results in the cell no longer being able to sustain critical 
functions. Because serine/threonine kinases and tyrosine 
kinases are both generally overexpressed in tumor cells, a 
broad-spectrum inhibitor like emodin may be effective in 
promoting cell death of or preventing cellular proliferation of 
cancerous cells. However, normal somatic cells also rely on 
kinase function, highlighting that it is important to develop 
alternative formulations that minimize off-target effects. 

We have successfully demonstrated that emodin can be 
efficiently loaded into chitosan nanoparticles in order to aid 
in the targeting of emodin to cancerous tissue. Both regular 
chitosan and chitosan-PEG polymers peak in EE when the 
drug:polymer ratio is about 0.4. Our hypothesis relied on the 
assumption that emodin-polymer interactions were generally 
favorable, but our experimentation suggests that emodin’s 
interaction with the polymers only leaned to one side of 
the equilibrium. As a result, not all the emodin molecules 
interacted with the chitosan at high ratios. During the in silico 
synthesis of NPs, the polymer strands bent around emodin 
molecules, which increased the number of emodin-polymer 
interactions. Consequently, at lower drug:polymer ratios, 
it appears that the EE is more favored for emodin-polymer 
interactions because fewer emodin-emodin interactions can 
form, and the formation of interactions is closer to random. 
As the drug:polymer ratio increases, the EE plateaus and 

drops toward 0 due to fewer polymer molecules to interact 
with emodin. The chitosan-PEG produced a slightly lower 
EE because emodin was unable to efficiently interact with 
the PEG, which reduced the amount of polymer available for 
emodin. PEG is moderately polar due to the ether linkages, 
but emodin consists of distinct nonpolar and polar regions, 
which results in unfavorable interactions. Despite this, the 
EEs between the two polymers were similar, yet the chitosan-
PEG polymer increases NP stability, which outweighs the 
slight loss of EE. Because a small number of monomer units 
were used in the simulation, all the polymers aggregated 
together to form the NP, but the PEG in the copolymer 
moved to the exterior of the NP (Figure 8). Consequently, the 
copolymer adopted a more flexible structure that was able to 
integrate emodin more thoroughly, while the normal chitosan 
remained rigid, resulting in the copolymer having an irregular 
shape and the chitosan creating a spherical NP (Figure 9). 
The irregular shape was more flexible, so it presents a benefit 
toward incorporating the drug into the nanoparticle as well as 
increasing nanoparticle-cell membrane interactions. Despite 
these promising results, our results are solely computational, 
and so factors such as surfactants and solvents, which 
are commonly used in nanoparticle synthesis, were not 
accounted for. This suggests that our study is only an estimate 
of what laboratory results could produce, and further testing 
is warranted. 

With the use of computational tools including docking and 
MD, we have supported that emodin effectively binds to a 
broad spectrum of kinases, showing its potential for cytotoxic 
activity as it may successfully inhibit the effect protein kinases 
have in cancerous development. As a result, future studies 
should investigate the design and testing of serine/threonine 
kinase specific inhibitors based upon an emodin scaffold. 
This can be mediated using NPs because chitosan is able to 
favorably interact with emodin, which will likely lead to a high 
EE and stable release rate, which can be quickly synthesized 
and tested in biological solutions. The results of this study 
showcase that emodin has the potential to be a cancer 
regulator through kinase inhibition and that it can be delivered 
through chitosan nanoparticles.

Figure 7. Chitosan and Chitosan-PEG system in MD simulation. Chitosan system (a) before and (b) after MD simulation. Chitosan-PEG 
system (c) before and (d) after MD simulation.                            

Figure 8. Surface morphology of nanoparticles. Surface 
morphology of (a) chitosan and (b) chitosan-PEG NP.

a) b) c) d)

a) b)
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METHODS
Docking 

Emodin in silico structure  was computationally constructed 
using Avogadro and optimized with the MMFF94 force field 
for 10,000 steps before being fully optimized with TD-DFT 
in Orca using the B3LYP and def2-TZVP functionals with 
CPCM(Water) as the solvent model (38). 

Molecular docking is used to study the interactions between 
two molecular structures using computer simulations. UCSF 
(University of California San Francisco) Chimera, a molecular 
visualization tool, was used to construct proteins based on 
its PDB ID taken from RCSB. All non-standard residues, 
subunits, and ligands were deleted and emodin was loaded 
onto the receptor file. The receptor and emodin were prepped 
prior to performing surface-binding analysis using the 
Autodock Vina extension on Chimera (39). A box was used 
to encapsulate the ligand and receptor and blind docking 
was performed. From the DockViewer, the top binding score 
was recorded. The binding score was calculated by summing 
up individual terms such as distance-dependent atom pair 
interactions (40). The complex was then loaded into PyMOL, 
another standard molecular visualization tool, to compare 
with other protein-drug complexes (41).

A PDB ID for the protein in complex with a leading drug 
was obtained from RCSB. The protein-drug complex was then 
aligned through PyMOL with the protein-emodin complex. The 
ligands listed under the small molecules section on the RCSB 
profile for the protein-drug complex were then highlighted in 
PyMOL. The binding locations of the selected ligands were 
compared to the binding location of emodin on the protein. 

A script was made using Python to locate all the residues 
within 2.75 Å of each non-hydrogen atom in emodin. This 
script was run on all the docked conformations, and a 
heatmap was created to represent the amino acid frequency 
near each amino acid for groups of proteins including serine/
threonine kinases, dual specificity kinases, and low-scoring 
proteins (42). 

Molecular dynamics 
The docked structure of emodin to MAPK-9 was chosen 

for further analysis through molecular dynamics (GROMACS 
version 2020.4) (43). The structure was solvated in water 
using the TIP3 model, and EM, NVT, NPT equilibration were 
conducted until the system was stable. Afterwards, a 1 ns 
simulation was performed, and the RMSD of the backbone 
chain was plotted over time. This was repeated three times, 
and the average was used for data generation.

A base polymer of chitosan with 6 monomer units of 
glucosamine was constructed using Avogadro and optimized 
with the MMFF94 force field for 10,000 steps. Similarly, to 
construct the copolymer, the base polymer was taken, and 
3 units of polyethylene glycol (PEG) were directly attached 
onto the amine group of the last glucosamine monomer 
on chitosan. Parameters for GROMACS were generated 
through the CHARMM webserver hosted by the University 

of Maryland (44–48). Next, a system of six polymers and 
a predetermined number of emodin molecules were added 
to a box without water or ions, which has been previously 
reported to accurately simulate NP formation. An energy 
minimization (EM) was performed for a maximum of 5,000 
steps (49). Afterward, the system was optimized for 75,000 
steps under a constant number of molecules, volume, and 
temperature (NVT) at 300 K. A PME mesh was used in the 
system and LINCS, a setting available, was used to constrain 
the bond lengths and hydrogen bonds, which increased the 
speed of the simulation without a large impact on accuracy. 
We used a Verlet cutoff scheme, which utilizes exact cutoffs 
to determine the location of atoms throughout the simulation 
and to increase the speed of the simulation. For each trial, the 
run was repeated three times, and the average was used for 
data generation.

After the simulation was completed, a script was made 
to find the shortest distance between any atom on emodin 
and any atom on the nearest chitosan polymer. The number 
of emodin molecules less than 2.75 Å from chitosan was 
averaged over the last 25,000 steps of the simulation and 
divided by the total emodin molecules in the simulation to find 
the entrapment efficiency (50). After the entrapment efficiency 
was plotted, Equation 1 was used to draw the line of best 
fit with least squares minimization and predict the optimal 
drug:polymer ratio. x represents the drug:polymer ratio, 
and the constants a, b, c, d, and f were optimized with least 
squares minimization. The function returns the entrapment 
efficiency.

f(x) = (ax³ + bx² + cx + d)/efx      (1)
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