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is often expressed in terms of a parameter known as the 
thermal conductivity (3). 
	 Significant technological advancements have occurred in 
the past 20 years, making investigations of heat transfer rates 
regarding different materials rich in societal applications. For 
instance, in the United States, the generation of electricity 
mainly comes from three sources: fossil fuels, nuclear energy, 
and renewable energy (4). Heat generated in a nuclear 
reactor is transferred to water surrounding the reactor. The 
water then, in the form of steam, carries the heat to a steam 
turbine where electricity is finally produced. The key point is 
to convey the heat from the reactor to the water with as little 
heat loss as possible, and this requires using materials with 
the highest heat conductivity to increase the heat transfer rate 
(5).
	 Fundamental to the study of heat transfer is the heat 
equation, which was formulated at the beginning of the 19th 

century by French mathematician and physicist Joseph 
Fourier. Fourier’s work has inspired other researchers to use 
the heat equation to solve a variety of problems in probability, 
financial mathematics, and quantum physics, as well as 
problems in biological and social sciences (6). The heat 
equation was derived based on an empirical rate formulation 
known as Fourier’s law of conduction and perfect insulation, 
which assumes no heat escapes the solid as it travels from 
hot to cold regions (2). The heat equation has the following 
form:

      (1)	

	 Here, the variable  represents the temperature at time t and 
location x, and the coefficient α = K/(ρcp)is known as thermal 
diffusivity in units of m2/sec, which represents the ability of a 
material to conduct heat relative to its ability to store heat. In 
practice, however, perfect insulation is very difficult to attain in 
experimental laboratory conditions. We hypothesized that the 
heat equation produces a time course temperature solution 
that overestimates real temperature data since it does not 
take into account heat loss to the surrounding air. To test this 
hypothesis, we used another empirical observation, Newton’s 
law of cooling, to derive a modified heat equation given by the 
following expression:

(2)
	

	 The additional term on the right-hand side of Equation 
2 accounts for heat loss due to convection derived from 
Newton’s law of cooling. The derivation of the heat and 
modified heat equations is presented in the Appendix section. 
We tested both models against experimental data collected 
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SUMMARY
Mathematical models have been used to study and 
understand many biological and physical systems. 
However, for mathematical models to be useful, one 
needs to carefully assess the assumptions that go 
into the derivation of the mathematical model. For 
example, the heat equation, which is fundamental 
to the study of heat transfer, was derived based on 
an empirical rate formulation known as Fourier’s 
law of conduction and perfect insulation. Since 
perfect insulation is very difficult to implement in 
laboratory conditions, we hypothesized that the heat 
equation would produce a time course temperature 
solution that overestimates real temperature data as 
a consequence of heat loss to the surrounding air, 
which is not accounted for in the heat equation. To 
test this hypothesis, we derived two mathematical 
models for the rate of change of heat under two 
laboratory conditions: one that considers heat loss 
and one that does not. The experiment consists of a 
squared metal bar that was heated at one end by a 
soldering iron and the temperatures along its length 
were measured by thermocouples. Our results, when 
compared to experimental data, clearly demonstrated 
that the mathematical model obtained by taking into 
consideration the heat loss yielded a better fit to the 
experimental data than the model without the heat loss 
assumption. Specifically, the mathematical model with 
the assumption of perfect insulation overestimated 
the temperature data. The research findings showed 
that when using a mathematical model, it is important 
to examine carefully the assumptions made in deriving 
the mathematical model.

INTRODUCTION
	 Heat transfer is one of the most common physical 
phenomena in our daily lives, including heating and cooling 
systems, engine radiators in cars, and heat pipes in computer 
systems (1). In general, heat transfer is energy in transit due 
to temperature differences, and hence “energy balance” is the 
underlying conservation principle (1, 2). The rate of heat flow, 
or rate of heat transfer, is the amount of heat transferred per 
unit of time in some particular material, usually measured in 
watts (joules per second). One of the most important factors 
affecting the rate of transfer, other than the temperature 
difference between two locations, is the material involved (2, 
3). This dependence of heat transfer on the material property 

Qingyu Zhu1, Hien Tran2, and Hong Yang3

1 Shenzhen Senior High School, Shenzhen, China
2 Department of Mathematics, North Carolina State University, North Carolina
3 Unaffiliated author

Article



2 DECEMBER 2021  |  VOL 4  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

from a heat experiment. The heat experiment consists 
of a square metal bar that was heated by a soldering iron 
encapsulated cylindrical heater and the temperatures along 
the length of the bar were measured by thermocouples 
mounted at multiple locations on the bar. Using MATLAB, 
we demonstrated that the modified heat equation provided 
a better fit to the experimental data than the original heat 
equation, while the original heat equation overestimated the 
real temperature data since it did not account for the heat 
loss to the surrounding air. The research findings showed the 
importance of examining carefully the assumptions went into 
the derivation of the mathematical model. If the application 
does not satisfy those assumptions, one cannot rely on 
the mathematical model to give a reliable prediction on the 
application phenomena. 

RESULTS 
	 In this section, we present simulation results of the steady-
state temperature solution from the heat equation A23 and 
the modified heat equation A24 obtained from the software 
package MATLAB (MathWorks). All physical parameters in 
the models – the thermal conductivity K (W/(mK)), the heat 
flux f (W/m2), and the Newton cooling constant h (W/(m2K)) 
– were estimated from experimental data using a least-
squares curve fitting formulation. The curve fitting procedure 
and the experimental set-up to obtain the data are described 
in the Methods section. To make sure that the temperature 
data reach steady-state values, the experiment was running 
sufficiently long enough so that 10 temperature data obtained 
at 0.1 sec. intervals were relatively constant from each 
thermocouple.

Original Heat Equation 
	 We begin by determining how well the steady-state 
temperature of the copper rod, which was obtained from 
the solution of the original heat equation A23, fits the 
experimental data. The model solution using estimated 

parameters K = 410.5 W/(mK) and f = -26550 W/m2 were 
plotted against the steady-state temperature data (Figure 1). 
Here, the parameters K and f represent thermal conductivity 
and heat flux, respectively, and were obtained by solving 
a least-squared curve fitting problem using MATLAB 
function fminsearch. The temperature from the original 
heat equation very poorly fitted the experimental data. The 
model underestimated the data at the beginning of the rod 
where the heat source is located and overestimated the data 
elsewhere in the rod, clearly demonstrating that the perfectly 
insulated assumption on the rod used in the derivation of the 
copper rod is not appropriate, as the model produced higher 
temperatures than experimental data in the region outside of 
the heat source. The experimental data (Figure 1) showed 
that there are heat losses as the heat is transferred along the 
length of the rod. In addition, the limitation of the linear steady-
state solution deriving from the original heat equation, the 
specified boundary conditions, and the unique characteristics 
of the least-squares curve-fitting algorithm contributes to both 
the over- and underestimation. 

Modified Heat Equation
	 Next, we examined how well the steady-state temperature 
derived from the modified heat equation (taking heat loss 
into consideration), equation A24, fit the same experimental 
data for the copper rod. The modified heat equation, with 
estimated parameters K = 408.28 W/(mK), f = -150000 W/
m2, and h = 13.6 W/(m2K), produced an almost exact fit to the 
experimental data (Figure 2). Here, the parameter h denotes 
the Newton cooling constant. 
	 Finally, we presented a comparison of the modified heat 
equation model to the experimental data for the aluminum 
rod. For comparison, we provided the results between the 
modified heat equation, with estimated parameters K = 195 
W/(mK), f = -206000 W/m2, and h = 18.3 W/(m2K), and the 
experimental data for aluminum (Figure 3). We have noted 
that the fit is excellent, similar to the case of the copper rod; 
however, the temperature for the aluminum rod compared 
to the copper rod is higher at the source and lower outside 

Figure 1: Comparison of copper experimental data and fit to 
the original heat equation. The curve depicted by the original heat 
equation clearly had a relatively great deviation with the experimental 
data points, as it failed to take into account some real-world factors. 
These unconsidered factors, including heat loss to the surrounding 
air, exert an effect most prominently seeing at the beginning and the 
middle parts of the graph.

Figure 2: Comparison of copper experimental data and fit to 
the modified heat equation. The modified heat equation evidently 
produced a better estimation of the real-world conditions, as the 
curve portraited by the equation nearly overlapped with each data 
point we obtained from our experiment.
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of the source. The research findings demonstrated that the 
aluminum rod is not as efficient as copper at conducting 
heat, which is confirmed since we obtained a lower thermal 
conductivity for the aluminum than the copper rod (K = 195 
W/(mK) for aluminum versus K = 410.5 W/(mK) for the copper 
rod). We noted that our estimated thermal conductivity value 
for aluminum 195 W/(mK) agrees well with the literature value 
of 237 W/(mK) (7).

DISCUSSION
	 Mathematical models, in general, contain parameters with 
unknown values. For the original and modified heat equations, 
the unknown parameters are the thermal conductivity K (W/
(mK)), the heat flux f (W/m2), and the Newton cooling constant 
h (W/(m2K)). A common approach to determine the parameter 
values from the experimental data is by curve fitting. However, 
depending on the structure of the mathematical model, the 
parameter values obtained by curve fitting might not be 
unique even though the mathematical model solution and the 
experimental data fit nicely.

Original Heat Equation
	 If the parameter values cannot be obtained uniquely, 
different initial guesses of the parameter values would produce 
different parameter values, including those values that are not 
physical. For example, using initial values for K = 10 W/(mK) 
and f = -50 W/m2, the estimated values of K and f that were 
determined by MATLAB routine fminsearch were 1.15 W/
(mK) and -74.38 W/m2, respectively. The estimated thermal 
conductivity for copper was 1.15 W/(mK), which is far off from 
the literature value of 380 W/(mK) for commercial copper at 
363 K (8). It is noted that K and f appear as a quotient in 
the temperature expression, Equation A23 derived from the 
original heat equation. Its estimated quotient value f/K was 
-64.68. Since K and f appear as a quotient in the Equation 
A23, their estimated values are not unique. For example, 
when we picked the following initial guesses K = 250 W/(mK) 

and f = 100000 W/m2, the estimated parameters K and f that 
minimized the residual errors, Equation 3, by fminsearch 
were 410.5 and –26550, respectively. Their quotient value is 
-64.68, which is the same as for the other initial guesses, but 
the value for the thermal conductivity 410.5 W/(mK) is much 
closer to the literature value 380 W/(mK). 
	 We note that even with a thermal conductivity value that 
is close to the literature value, the fit of the steady-state 
temperature comparing to the experimental data is not 
good. The model mostly overestimated the experimental 
data (Figure 1). This firmly supports our hypothesis that the 
original heat equation produced a time course temperature 
that mostly overestimated the real temperature data since 
it does not consider the heat loss to the surrounding air. To 
determine a better estimation of the heat flux at the left end 
point of the bar, we assume the literature value 380 W/(mK) 
for the thermal conductivity of the copper bar and estimate 
only the heat flux f. This yields a heat flux f value to be -24579 
W/m2. We note that the fit quotient f/K still comes out to be 
-64.68, which is the same as the other estimates.

Modified Heat Equation
	 We note that from the steady-state temperature equation 
A24 for the modified heat equation, K and f as well as 
h (through the formula          ) also appear as quotients (   
--and     ). Hence, curve fitting will not produce unique values 
for them but only for their quotients. Using initial guesses 
K = 1000 W/(mK), f = -160000 W/m2, and h = 0.5 W/(m2K), 
fminsearch produced the estimated values K = 408.28 W/
(mK), f = -150590 W/m2, and h = 13.6 W/(m2K). The thermal 
conductivity value of 408.28 W/(mK) is almost the same as 
those estimated from the original heat equation. However, the 
modified heat equation fit the experimental data much better 
than the original heat equation (Figure 2). The Newton cooling 
constant h = 13.6 W/(m2K) is also within the range reported 
in the literature. The range values of h is 2.8-23 for still air 
and 11.3-55 for moving air (2). Finally, for the aluminum bar, 
we obtained from fminsearch K = 195 W/(mK), f = -206000 
W/m2, and h = 18.3 W/(m2K). The Newton cooling constant 
is still within the range reported in the literature. However, 
aluminum thermal conductivity value is lower than the value 
for the copper bar indicating that the aluminum bar is not as 
efficient at conducting heat.
	 One possible extension of this study in the future is to 
design an experiment in which we have a perfectly insulated 
rod. However, such an experiment, which will allow us to 
verify the validity of the original heat equation, is very difficult 
to implement in real laboratory conditions.

MATERIALS AND METHODS
Experimental Data
	 The heat experiment (Figure 4) consists of a long copper 
and aluminum bar, respectively. The copper bar is 70 cm 
length with a 1 cm2 cross section, with round circular holes 
drilled about 4 cm apart along the bar to accommodate 
a series of 15 thermocouples placed along the bar to be 
used for temperature measurement. The heating element 
is a soldering iron encapsulated cylindrical heater of 30 W. 
Although factors such as cross-sectional area of the rod, the 
distance between two adjacent holes, and the dimension of 
the holes can indeed affect the result, their effect is much 
smaller than that of heat loss, which is the focus of our 

Figure 3: Comparison of aluminum experimental data and fit to 
the modified heat equation. The modified heat equation produced 
a nearly perfit fit to all the experimental data for the aluminum bar. It 
is noted that the temperatures toward the right end of the rod, near 
x = 0.66 m, are lower than those recorded for the copper rod. This 
is a consequence of the fact that aluminum has a smaller thermal 
conductivity value than copper.
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experiment. In addition, we believe the power of the heater 
will only affect how long we must wait for the temperature of 
the rod to reach a steady state. 

Curve Fitting
	 To illustrate how well steady-state temperature equations 
A23 and A24 fit the experimental data, we determined 
three physical parameters in the model (f,K,h) to give the 
best curve fitting of the model to the data. All computations 
were carried out using MATLAB (MathWorks). MATLAB is 
a multi-paradigm programming language and numerical 
computing environment that allows for data visualization 
as well as complex functions and computational algorithms 
to be implemented in a relatively simple manner. We used 
fminsearch function from MATLAB to find the three physical 
parameters in the model to obtain the best curve fitting. The 
best curve fitting is achieved by determining the physical 
parameters (f,K,h) to minimize the sum of squared residual 
errors between the data and the model equations, equation 
A23 or A24 as described by:

(3)

where  denotes the xi location of the thermocouple along 
the length of the rod associated with the ith thermocouple, 
ui

data is the steady-state temperature data at the location xi, 
and ui

m is the steady-state temperature calculated from the 
model equations A23 or A24 at the location xi. fminsearch 
uses the Nelder-Mead algorithm to find the minimizer of 
a function of multiple variables. Nelder-Mead is a pattern 
search optimization algorithm that does not require the 
gradient information to find a local minimum of a function. 
The algorithm works by using a shape function called a 
simplex. At each iteration, the vertex with the worst function 
value is replaced with another point with a better value. The 

user provides an initial guess for the parameters (f,K,h) and 
fminsearch will iteratively update the parameters so that 
the function J in Equation (3) decreases in values at each 
iteration. fminsearch will terminate the iteration when the 
tolerances on the function J and parameter values between 
two successive iterations are less than or equal to 10-4. 
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Figure 4: Experimental set-up. The experiment was carried out on 
a square metal bar of about 75 cm length and 1 cm2 cross section, 
with holes (in which thermocouples can be inserted) drilled about 4 
cm apart along the bar. We used both copper and aluminum bars 
in the experiment to study the properties of different metals and 
how they affect the heat conduction. The heating element used 
was a soldering iron encapsulated cylindrical heater of 30 W. The 
thermocouples were fit tightly into the drilled holes to ensure that 
thermal equilibrium between the rod and the thermocouple was 
established quickly.

Figure 5: Heat conduction in a solid. The temperature T1 at the left 
end of the material is assumed to be larger than T2 at the right end 
so that heat is flowing from left to right. Q is the net heat transfer at 
the left end.



Appendix 

Mathematical Modeling 

To investigate the rate of heat transfer by conduction in the copper bar, we first consider 

Fourier’s law of heat conduction. This law demonstrates the influential factors in the heat 

transfer as shown in the following equation (2): 

𝑞 = 
𝑑𝑄

𝑑𝑡
 = −𝐾𝐴

𝑑𝑢

𝑑𝑥
                            (A1) 

where Q is the net heat transfer in Joules, 𝑡 is the time taken in seconds, 𝑢 is the temperature in 

Kelvin (or ℃), 𝑥 is the length between the two ends in meters, 𝐾 is the thermal conductivity in 

W

m∙K
, 𝐴 is the cross-sectional area normal to the direction of heat flow in m2, and 𝑞 is the rate of 

heat transfer and is given in units of 
Joule

sec
 (Figure 5) In addition, we make the following standard 

assumptions: 

1) The heat transfer inside the copper rod is solely by conduction; 

2) The heat transfer is along the axis 𝑥, or the length of the copper rod, from left to right; 

3) The temperature is uniform over a cross section of the rod; 

4) The rod is perfectly insulated, meaning that there is no heat escaping through the side of 

the rod. 

Based on these assumptions, we seek an equation to describe the temperature at any time t 

and any point x in the rod. The copper rod can be divided into several small segments, and for 

each segment that starts at one end 𝑥 and ends at the other end 𝑥 + ∆𝑥, if we suppose that the 

length of the segment (△ 𝑥) is infinitely small, then it would become almost as a surface, or a 

cross section. Subsequently, the net rate of heat accumulation equals the rate of heat input minus 

the rate of heat output. 

Let the function 𝑢 (𝑡, 𝑥) denote the temperature at time t and location x of the rod. Let 

𝐻 (𝑡, 𝑥) denote the heat (energy) transferred, which is proportional to the mass and the 

temperature: 𝐻 (𝑡, 𝑥) =  𝑐𝑝𝑚 𝑢(𝑡, 𝑥) (Joule) where 𝑐𝑝 is the specific heat (Joule/(kg.K)and 𝑚 

(kg) is the mass. Then, for a small segment of the copper rod that starts at one end 𝑥 and ends at 

the other end 𝑥 + ∆𝑥, the rate of heat accumulation of a certain segment can be expressed as: 

𝑑𝐻

𝑑𝑡
= 

𝑑

𝑑𝑡
(𝑐𝑝𝑚 𝑢(𝑡, 𝑥)).                           (A2) 



Assuming no heat is generated inside the small segment (𝑥, 𝑥 + ∆𝑥), the rate of heat 

accumulation is equal to the rate of heat input at 𝑥 minus the rate of heat output at 𝑥 + ∆𝑥, where 

the rate of heat input (according to Fourier’s law of heat conduction) of the segment is given by: 

𝑞 = −𝐾𝐴
𝑑𝑢

𝑑𝑥
(𝑡, 𝑥)                             (A3) 

and the rate of heat output is given by: 

𝑞 =  −𝐾𝐴
𝑑𝑢

𝑑𝑥
(𝑡, 𝑥 +△ 𝑥).                          (A4) 

That is, 

𝑑

𝑑𝑡
(𝑐𝑝𝑚 𝑢(𝑡, 𝑥)) =  −𝐾𝐴

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥) +  𝐾𝐴

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥 +△ 𝑥).               (A5) 

Since 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
=  

𝑚

𝐴∆𝑥
 , we have 𝑚 =  𝜌𝐴∆𝑥. Substituting this expression for 𝑚 

and dividing both sides of the equation by 𝐴, we obtain 

𝜌∆𝑥
𝑑

𝑑𝑡
(𝑐𝑝 𝑢(𝑡, 𝑥)) =  −𝐾

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥) +  𝐾

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥 + ∆𝑥).               (A6) 

Dividing both sides by ∆𝑥, we get 

𝜌
𝑑

𝑑𝑡
(𝑐𝑝 𝑢(𝑡, 𝑥)) =  𝐾 ∙

[
𝑑𝑢

𝑑𝑥
(𝑡,𝑥+∆𝑥)− 

𝑑𝑢

𝑑𝑥
(𝑡,𝑥)]

∆𝑥
.                    (A7) 

Taking the limit as ∆𝑥 → 0 yields 

𝜌
𝑑

𝑑𝑡
(𝑐𝑝 𝑢(𝑡, 𝑥)) =  𝐾 lim

∆𝑥→0

[
𝑑𝑢

𝑑𝑥
(𝑡,𝑥+∆𝑥)− 

𝑑𝑢

𝑑𝑥
(𝑡,𝑥)]

∆𝑥
= 𝐾

𝑑2

𝑑𝑥2
 𝑢(𝑡, 𝑥).           (A8) 

Now, assuming 𝑐𝑝 is constant, the above equation can be rewritten as 

𝑑

𝑑𝑡
𝑢(𝑡, 𝑥) = (

𝐾

𝜌𝑐𝑝
) ∙

𝑑2

𝑑𝑥2
 𝑢(𝑡, 𝑥).                       (A9) 

The coefficient 𝛼 =
𝐾

𝜌𝑐𝑝
 is known as the thermal diffusivity in units of 

m2

sec
, which represents the 

ability of a material to conduct heat relative to its ability to store heat. When the coefficient is 

small, the material is less conductive, and when the coefficient is large, the material serves as a 

better conductor. Equation A9 is known as the one-dimensional heat equation. In this paper, we 

refer to equation A9 as the original heat equation. 

 Since all the data collected from the laboratory is steady-state data (reaching dynamic 

equilibrium), 
𝑑𝑢

𝑑𝑡
= 0. Hence, 

𝛼 ∙
𝑑2𝑢

𝑑𝑥2
=  0  =>  

𝑑2𝑢

𝑑𝑥2
=  0.                        (A10) 



Integrating the equation above twice, we obtain the function 𝑢(𝑥): 𝑢(𝑥) = 𝑐1𝑥 + 𝑐2. To 

determine the constants 𝑐1 and 𝑐2, we assume that at the left end of the rod where the soldering 

iron was used to input heat to the copper rod, the temperature can be described in terms of heat 

flux 𝑓, which is the rate of heat transfer per unit cross-sectional area and is given by 𝐾 ∙
𝑑𝑢

𝑑𝑥
(0) =

𝑓, which implies 
𝑑𝑢

𝑑𝑥
(0) =  𝑐1 =

𝑓

𝐾
. At the other end of the copper rod (Figure 4),  we can either 

assume that the temperature of the rod is the same as the room air temperature or the temperature 

measured by the 15th thermocouple (the one closest to the end of the copper rod). The latter is 

physically more reasonable since the temperature of the rod is higher than the room air 

temperature due to the heat input from the soldering iron. Hence, 𝑢(𝐿) = 𝑢15
𝑑𝑎𝑡𝑎 which implies 

𝑢(𝐿) = 𝑐1𝐿 + 𝑐2 = 𝑢15
𝑑𝑎𝑡𝑎 ⟹ 𝑐2 = 𝑢15

𝑑𝑎𝑡𝑎 − 𝑐1𝐿. Hence, the steady-state temperature in the 

copper rod is given by the following expression: 

𝑢(𝑥) =
𝑓

𝐾
𝑥 + (𝑢15

𝑑𝑎𝑡𝑎 −
𝑓

𝐾
𝐿).                       (A11) 

However, such a simple liner equation for the steady-state temperature derived from the 

original heat equation clearly does not take into consideration some important physical factors. 

In fact, from the experimental set-up (Figure 4), some of the heat is lost to the air by heat 

convection. Using Newton’s law of cooling, the rate of heat transfer by convection is 

proportional to the temperature difference, ℎ ∙ 𝐴 (𝑢 − 𝑢𝑎𝑖𝑟), where ℎ is the Newton cooling 

constant and 𝑢𝑎𝑖𝑟 is the room air temperature (2). Taking heat loss into consideration, the rate of 

heat accumulation in the small segment of the rod equals the rate of heat input minus the rate of 

heat output as well as the rate of heat loss by convection to the air (including the top, bottom, and 

the other two sides of the rod but excluding the front and back ends of the rod, which are 

relatively small). If we assume that the width of the rod is 𝑎 and the thickness of the rod is 𝑏, the 

heat loss at the top and the bottom (of a small segment) equals  −2ℎ𝑎∆𝑥( 𝑢(𝑡, 𝑥) − 𝑢𝑎𝑖𝑟), and 

the heat loss at the other two sides of the rod equals  −2ℎ𝑏∆𝑥( 𝑢(𝑡, 𝑥) − 𝑢𝑎𝑖𝑟). The modified 

equation can be expressed as: 

𝑑

𝑑𝑡
(𝑐𝑝𝜌𝐴∆𝑥 𝑢(𝑡, 𝑥)) =  −𝐾𝐴

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥) +  𝐾𝐴

𝑑𝑢

𝑑𝑥
(𝑡, 𝑥 + ∆𝑥) − 2ℎ𝑎∆𝑥( 𝑢(𝑡, 𝑥) −  𝑢𝑎𝑖𝑟) −

2ℎ𝑏∆𝑥( 𝑢(𝑡, 𝑥) −  𝑢𝑎𝑖𝑟).                             (A12) 

By dividing both side by 𝐴∆𝑥, we obtain: 

𝑑

𝑑𝑡
(𝑐𝑝𝜌 𝑢(𝑡, 𝑥)) =  𝐾

[
𝑑𝑢

𝑑𝑥
(𝑡,𝑥+∆𝑥)− 

𝑑𝑢

𝑑𝑥
(𝑡,𝑥)]

∆𝑥
− 

(2𝑎ℎ+2𝑏ℎ)

𝐴
 ( 𝑢(𝑡, 𝑥) − 𝑢𝑎𝑖𝑟).       (A13) 



Taking the limit as ∆𝑥 → 0, we obtain the modified heat equation:   

𝑑

𝑑𝑡
(𝑐𝑝𝜌 𝑢(𝑡, 𝑥)) =  𝐾 ∙

𝑑2

𝑑𝑥2
𝑢(𝑡, 𝑥) − 

2ℎ(𝑎+𝑏)

𝑎𝑏
 ( 𝑢(𝑡, 𝑥) − 𝑢𝑎𝑖𝑟).          (A14) 

Equation A14 is the modified heat equation that takes into consideration the heat loss due to 

convection. The steady state condition, where temperature is a function of 𝑥 only, can also be 

derived from the following equation by setting 
𝑑𝑢

𝑑𝑡
= 0 :  

𝐾 ∙
𝑑2𝑢

𝑑𝑥2
− 

2ℎ(𝑎+𝑏)

𝑎∙𝑏
 ∙ ( 𝑢(𝑥) − 𝑢𝑎𝑖𝑟) = 0,                    (A15) 

 

𝐾𝑢′′ − 
2(𝑎+𝑏)

𝑎∙𝑏
ℎ ∙ 𝑢(𝑥) = − 

2(𝑎+𝑏)

𝑎∙𝑏
ℎ ∙ 𝑢𝑎𝑖𝑟 .                  (A16) 

To simplify the equation, we introduce 𝑔 to denote the 
2(𝑎+𝑏)

𝑎∙𝑏
ℎ, and the equation becomes: 

𝐾𝑢′′ − 𝑔 ∙ 𝑢(𝑥) = − 𝑔 ∙ 𝑢𝑎𝑖𝑟 .                        (A17) 

The solution to the modified steady-state heat equation is given by: 

𝑢(𝑥) = 𝑐1𝑒
−√

𝑔

𝐾
∙𝑥
+ 𝑐2𝑒

√
𝑔

𝐾
∙𝑥
+ 𝑢𝑎𝑖𝑟 .                      (A18) 

Here, the constants 𝑐1 and 𝑐2 are determined from the conditions 𝐾 ∙
𝑑𝑢

𝑑𝑥
(0) = 𝑓 and 𝑢(𝐿) =

 𝑢15
𝑑𝑎𝑡𝑎 as was done earlier for the original steady-state heat equation. To this end, we have: 

𝑑𝑢

𝑑𝑥
(0) =  −𝑐1√

𝑔

𝐾
+ 𝑐2√

𝑔

𝐾
= 𝑓/𝐾,                      (A19) 

𝑢(𝐿) =  𝑐1𝑒
−√

𝑔

𝐾
∙𝐿
+ 𝑐2𝑒

√
𝑔

𝐾
∙𝐿
+ 𝑢𝑎𝑖𝑟 = 𝑢15

𝑑𝑎𝑡𝑎.                  (A20) 

 

Solving this set of equations for 𝑐1 and 𝑐2, we obtain: 

𝑐2 =
√
𝑔

𝐾
(𝑢15
𝑑𝑎𝑡𝑎−𝑢𝑎𝑖𝑟)+

𝑓

𝐾
𝑒
−√

𝑔
𝐾∙𝐿

√
𝑔

𝐾
[𝑒
√
𝑔
𝐾
∙𝐿
+𝑒

−√
𝑔
𝐾
∙𝐿
]

                         (A21) 

𝑐1=𝑐2−
𝑓

𝐾
√
𝐾

𝑔
.                               (A22) 

In summary, we have derived two mathematical expressions for the steady-state temperature in a 

copper rod. The first equation was obtained by assuming that we have perfect insulation and is 

given by: 

𝑢(𝑥) =
𝑓

𝐾
𝑥 + (𝑢15

𝑑𝑎𝑡𝑎 −
𝑓

𝐾
𝐿).                        (A23) 



The second steady-state temperature equation was obtained by removing the perfect insulation 

assumption since it is very difficult to satisfy in real physical experiments. This equation is given 

by: 

𝑢(𝑥) =

{
 
 

 
 
√
𝑔

𝐾
(𝑢15
𝑑𝑎𝑡𝑎−𝑢𝑎𝑖𝑟)+

𝑓

𝐾
𝑒
−√

𝑔
𝐾∙𝐿

√
𝑔

𝐾
[𝑒
√
𝑔
𝐾∙𝐿+𝑒

−√
𝑔
𝐾∙𝐿]

−
𝑓

𝐾
√
𝐾

𝑔

}
 
 

 
 

𝑒
−√

𝑔

𝐾
∙𝑥
+
√
𝑔

𝐾
(𝑢15
𝑑𝑎𝑡𝑎−𝑢𝑎𝑖𝑟)+

𝑓

𝐾
𝑒
−√

𝑔
𝐾∙𝐿

√
𝑔

𝐾
[𝑒
√
𝑔
𝐾∙𝐿+𝑒

−√
𝑔
𝐾∙𝐿]

𝑒
√
𝑔

𝐾
∙𝑥
+ 𝑢𝑎𝑖𝑟 ,   (A24) 

where 𝑔 =
2(𝑎+𝑏)

𝑎∙𝑏
ℎ. In the above two steady-state equations, the physical parameter 𝑓 denotes 

the heat flux from the soldering iron, 𝐾 denotes the thermal conductivity, and the parameter ℎ is 

the Newton cooling constant. The values for these parameters were determined from the least-

squares curve fitting problem using experimental data. 

 


