
25 JUNE 2022 | VOL 5 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

level abstraction-reasoning ability which makes it difficult
for algorithms to handle volatile and hard-to-predict real-life
problems. The problems caused by this task-based nature
necessitated flexibility and robustness for certain broader
subfields of AI, such as L5 self-driving, domestic robotics,
or personal assistants; there is even increasing interest
in generality itself (e.g., developmental robotics, artificial
general intelligence) (2, 3).
	 The first and most important step to take in order to offer
an approach that is closer to human intelligence is to examine
the concept of intelligence and to define it in the most useful
way. Various definitions have been made for intelligence in
the past. Legg and Hutter summarized the definitions made
in the context of artificial intelligence research as follows:
"Intelligence measures a person's ability to achieve goals in
a wide and varied environment (4)." Two main characteristics
are emphasized here: a task-goal focus and generalizability
to a wide range of environments. Accordingly, while human
intelligence can perform tasks with its high ability, these
abilities can also be generalized for new tasks in new
environments (skill acquisition). This feature is a mechanism
that human nature has developed in line with evolutionary
psychology to solve new unknown tasks and problems (5, 6).
	 In the direction of the development of AI, many approaches
have emerged to develop and evaluate AI models. One of
them is the human observational approach that examines,
judges, and scores the system’s inputs and outputs. This is a
highly subjective, difficult, and expensive method to automate.
White-box analysis, on the other hand, is inspecting the
implementation of the system to determine its input-output
response and score it (e.g., an algorithm that plays “Connect
Four”) (7). Peer confrontation, for example, is having the
system compete against either other AIs or humans. This
is the preferred mode of evaluation for player-versus-player
games, such as chess. The benchmarking approach, which
is based on enabling the system through algorithms to
produce outputs for a "test set" of inputs (or environments) for
which the desired outcome is known (solvable by humans), is
another of the most valuable approaches for the evaluation of
artificial intelligence. In particular, it is reproducible (test set
fixed), scalable (cheap to run the evaluation multiple times),
easy to set up, and flexible enough to be applied to a wide
variety of possible tasks (8). For this reason, benchmarking
has been an important part of progress in artificial intelligence

A machine learning approach for abstraction and
reasoning problems without large amounts of data

SUMMARY
Data-hungry machine learning techniques can
sometimes be more successful than human
intelligence for the ability they have acquired for the
specific task they were trained for. However, task-
based machine learning techniques with very little data
are rather inconsistent compared to human cognitive
abilities due to the lack of generalization. This makes
it difficult for algorithms to handle volatile and hard-
to-predict real life problems. Alternative approaches
that have the potential to offer human-like abstraction
capability are needed. This research is aimed to
create an algorithm that emulates the performance-
like, reasoning tasks that people apply in Intelligence
Quotient (IQ) tests without the need for large amounts
of data. The created algorithm solves reasoning
problems in the created data set. Generalization is
expected to be able to solve arbitrary complex tasks
rather than a skill acquisition for a task. We obtained
an accuracy score of 0.834 for the solutions created
by the developed algorithm. Significance tests on the
variations of accuracy have shown that consistency
is achieved through unknown tasks and over-fitting
problems are avoided which was not the case for
task-based developed Convolutional Neural Network
(CNN) methods using Cellular Automaton (CA) during
this research. The algorithm on abstraction-reasoning
and testing provides a benchmark for measuring
Artificial Intelligence (AI) skill acquisition in unknown
tasks with very small amount of data to learn.

INTRODUCTION
	 Since its emergence, computer science has been
producing solutions to complete tasks that people can do
but have difficulty doing. Learning algorithms that emerged
in the 1990s have become able to do many specific tasks
better than humans by closely mimicking the way people
think and learn. For instance, on March 15, 2016, for the
first time, a computer beat a world champion in the game
of Go, which is an abstract strategy board game with too
many possibilities, using a powerfully trained deep learning
model on this task (1). The major successes of the field
have been in building special-purpose systems capable of
handling narrow, well-described tasks, sometimes at above
human-level performance. However, it is the narrow and
specific task-based nature that differentiates AI from human

Suleyman Emre Isik1*, Ali Eren Aytekin2*, Halil Vurus2

1 Bishop of Llandaff High School, Cardiff, United Kingdom
2 Adana Anatolian High School, Adana, Turkey
*Authors contributed equally

Article

25 JUNE 2022 | VOL 5 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

and is a suitable approach for this research.
	 In contrast to the task-based development of artificial
intelligence from the past to the present, psychometry-
abstraction and reasoning assessments methods- tests
intelligence over broad cognitive abilities as opposed to task-
based. What is important at this point is that the tasks were
previously unknown to the person taking the test. Thus, the
person who takes the test does not have a practice before.
This approach in psychometrics is similar to the evaluation
of artificial intelligence models. Recently, there has been a
significant increase in the approach of testing broad cognitive
abilities in parallel with psychometrics for systems targeting
flexibility in the field of artificial intelligence. Examples of
these are “Arcade Learning Environment for Reinforcement
Learning agents” (9), “Project MalmO” (10), “The Behavior
Suite” (11), “GLUE” (12), and “SuperGLUE” (13). The rationale
behind these projects is to measure a more general skill than
a skill in a particular task by expanding the range of target
tasks. However, a major problem with these multitasking
models when it comes to assessing flexibility is that the tasks
are still known in advance by their developers and models are
developed to pass tests. The task-based nature appears in
forms such as a use of task-specific prior knowledge inherited
from developers and external knowledge obtained through
pre-training. Therefore, simply extending task-specific skills
assessment to more tasks does not produce a qualitatively
different type of assessment. Such benchmarks, in contrast
to the psychometric approach, still look at skills rather than
broad cognitive abilities (this does not mean that such
measures are not useful, only that such static multitasking
measures do not directly assess flexibility or generalizability).
	 Unlike these tasks and skill-based approaches, the idea of
using cognitive tests for artificial intelligence, which is used to
measure human intelligence in psychometrics, was suggested
in 1964 (14). When we evaluate the concept of artificial
intelligence word for word, this approach makes sense. One
of the reasons is that if an AI is created by a developer to
solve a question in a task-based IQ test, it won't work on the
other question. Here the IQ test will really test the cognitive
abilities of the artificial intelligence rather than the intelligence
of the developer. If two people with the same prior knowledge
and experience are asked to solve an unprecedented
problem, the person with the higher intelligence will perform
better. Here, intelligence is independent of skill; skill is only an
output of intelligence. The intelligence referred to here is fluid
intelligence that can reason in unique situations, rather than
crystallized intelligence based on past training (15).
	 We created an algorithm that solves the performance-
like reasoning tasks that people apply in IQ tests without a
need for large amounts of data. The created algorithm solves
the reasoning problems that have not been seen before. The
examples regarding to the problems are as in Figure 1 which
includes a sample task demonstration with input(i) on the
left and output(o) on the right for each case (a and b) and
Figure 2 which is the input about the task that the test taker

is expected to solve. If task demonstrations are examined
to create the output shape for this sample task input, it can
be deduced that a 9×9 output should be created for the 3x3
input. Then, it can be deduced that the green cells in the input
form an output connection from the corners of the 4×4 green
cells from the corner to the red end. The expected solution for
this is shown in Figure 3.
	 Another random task solution is shown in full screen in
Figure 4. When the task demonstrations are examined, it can
be deduced that the bounded area among the yellow cells
determine the dimensions of the output grid. Each colored
object inside the yellow area has various dimensions and
for each colored box in the figure outside the yellow area, a
shape was created according to the dimensions of the objects
inside the yellow areas in the output. As a result, the shapes
outside the yellow area were placed inside the yellow area
without changing the position of the shapes in the yellow area.
While humans can solve these and similar never-before-seen
problems in a short amount of time, even a powerful deep

Figure 1. A task demonstration used to develop a reasoning.
Case a part o is a solution of the case a part i and case b part o is a
solution to case b part i.

Figure 2. Test input that test taker sees to produce the
corresponding output. The input is supposed to be solved by the
reasoning developed in the task demonstration.

25 JUNE 2022 | VOL 5 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

learning algorithm needs to be trained with a load of data to
solve only one simple task. For a task, the test taker will have
access to the inputs and outputs of the task representations
(training set) as well as the test set's input. The goal is to
generate a test set output for each test set input. While doing
this, it is expected that the dimensions of the output grid are
selected, and each cell is assigned an integer between 0 and
9 representing the colors.
	 Generalization is expected to be able to solve different
tasks and problems rather than a skill for a task. Therefore,

the development of the algorithm through sample tasks and
the evaluation of the algorithm over confidential data were
carried out by two developers who were unaware of each
other’s work.
	 In this research, we built the algorithm on abstraction-
reasoning aims to provide a benchmark for measuring non-
stochastic AI skill acquisition in unknown complex tasks,
which opens a door to Artificial General Intelligence through
the consistency achieved by very little data.

RESULTS
	 An algorithm has been developed to solve a set of
problems, which involves coloring the grids according to its
corresponding input, that requires similar cognitive abilities
to those examined in IQ tests. The results of the research are
obtained through the developed genetic algorithm involving
Domain Specific Language (DSL) and various functions,
some of which involve machine learning, to figure out the
solutions.
	 For each task in the test set, up to 3 outputs can be
produced as a prediction for each test input grid. For a
given task output, if the ground truth is contained in any
of the 3 predicted outputs, then the error for that task is 0,
otherwise it is 1. The final score is averaged across all tasks.
Mathematically, for each task i, the algorithm can make up to
3 predictions oij, where 1 ≤ j ≤ 3. The error, e, for the task i with
ground truth gi is:

Where d(x, y) is 0 if x = y, otherwise 1. The overall error score
is the average over all N task outputs:

Figure 3. The solution of the test input based on some simple
reasonings. The solution must be 9x9 and 4x4 green squares must
be connected by their corners in the same direction where the red
cell points out.

Figure 4. A task demonstration, test input and solution. The simple goal is to scale the shape outside the unconnected yellow cells by
using the separate shapes inside the yellow cells with a grid size equal to the size of quadrilateral bounded by yellow cells.

25 JUNE 2022 | VOL 5 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

	 The developed algorithm obtained an accuracy score
of 0.882 when evaluated with the data available by the
first person who developed the algorithm. Augmenting the
samples with diagonally flipped tasks was a simple trick
that gave significantly better score during the development.
Preprocessing all samples by remapping colors according to
some heuristics also worked well. Functions which take more
than one parameter were growing the search space super-
exponentially, and that they usually took either the input or
output image size as the second argument. Finally, when
evaluated by the second developer, who is responsible for
datasets and tests, with the three other data sets unknown by
the first developer, an accuracy score of 0.834 was achieved
on average.
	 Binomial hypothesis testing has been executed to
understand the meaning of this difference in accuracy scores.
Sufficient evidence has been obtained to reject the null
hypothesis of H0, which specifies that the accuracy scores
are not significantly different, at 5% significance level with
a p-value of 0.00328. Therefore, the one-tailed alternative
hypothesis that claims the accuracy scores are significantly
lower is considered to be valid. This was an unexpected result
as the characteristics of all datasets are similar. However,
despite this, the scores have shown consistency and still can
be considered as high. This reveals that generalization, which
is the ultimate purpose of this research, has been achieved
and overfitting problems are avoided. If the accuracy scores
in the evaluation phase were consistently and significantly
higher than those in training, overfitting concerns could arise
that would disrupt generalization.
	 Everything was implemented efficiently in C++ (with no
dependencies) and run in parallel. A simple scheduler tried to
use the 9 hour / 16 GB memory efficiently. The implemented
algorithm was run on Windows and Mac OS X, no GPU
required. A natural way to make this approach run faster
is to reduce the search depth. When a full 9 hours is used,
about half the problems can be run at depth 4, while running
at depth 3 is about 20x faster (and takes 20x less memory).
During development, the algorithm had been running at depth
2, which is again about 15x faster than depth 3, while solving
about 70% as many tasks on the evaluation set. All in all, this
algorithm has a low computational hardware requirement,
and it can even be lowered by changing parameters and
giving up some accuracy.

DISCUSSION
	 In this paper, we considered the relationship between
intelligent system and skill. Figure 5 shows the intelligent
system's process of solving a task by creating a skill. For
example, while the system that creates neural networks for
solving tasks is an intelligent system, the model that works
for that task is a skill. The interaction between the task,
the intelligent system, and the skill program consists of
two phases: the training phase and the evaluation phase.
The purpose of the training phase is to build a skill that will

generalize to future assessment situations. The purpose of
the assessment phase is to assess the capacity of this ability
to cope with new situations.
	 In this research, we considered pairs of source-target
training images, and the task was to infer the rule which
will allow to transition from source image to the target and
later apply such rule to an arbitrary number of images. The
rules which should be inferred were extremely diverse, and
therefore the first question to ask was how should such rules
be represented? The knowledge representation is a critical
problem, therefore a long literature review has been done
on it (16). We found that CA method, which is a collection of
transition rules that specify how to update a set of numbers
situated on a grid with a recurrent CNN, may be useful
because its quite complex behaviors emerge from rather
simple rules (17).
	 Our first approaches involve simple data augmentation
techniques and a supervised 2D CNN model to make
predictions. The model takes a 2D matrix as input and outputs,
the SoftMax probabilities of different values occurring in the
output matrix. However, only a few training examples were
available to the first developer for each task; new input-output
pairs are created, for example, by randomly switching colors.
The extra augmented data helps the model capture patterns
more easily. It can be seen from in Figure 6 that the same
training pairs are augmented (hundreds of times) to produce a
large dataset. This dataset is used to train the recurrent CNN
for each task. The CNN predicts a probability distribution
over the "pixels" or values in the matrix. This probability
distribution is used to generate the final output matrix. This
method achieved up to 0.95 accuracy score in the training
set with a low consistency. However, this method failed in the
never-seen tasks by the accuracy score falling under 0.30
since generalization, the purpose of this research, couldn’t be
achieved as each task required different reasoning.
	 Where all tasks could be solved by a correct use of CA,
some tasks were much more arbitrarily complex than others.
These tasks largely rely on programmers’ skills, hence, there
still was a probability of failing. This sparked the need for
a system with some ‘general skills’ that automatically detect
shapes, symmetries, background color, or features that
remain unchanged. A DSL had to be developed to express

Figure 5. The relationship of intelligent system and task through
skill. A program synthesis engine that can look at a task and output
a solution program will be an "intelligent system" and the resulting
solution program that can handle future input for that task will be a
"skill program".

25 JUNE 2022 | VOL 5 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

these most basic concepts that people naturally accept and
easily identify. A framework was developed, and various
functions have been written to analyze the sample tasks at
the matrix level and to apply basic transformations.
	 Combining and organizing the developed DSL with
various functions was essential. After a period of research,
we concluded that the smartest way to do this organization
was to develop a genetic algorithm that will combine basic
operations until the desired result is achieved. Once a simple
and powerful DSL has been developed to express various
transformations on images, it must now be applied to an
efficient genetic algorithm that can find the solution to a task
by itself. The implemented algorithm achieved consistency
in completing the tasks without any of overfitting symptoms,
unlike the deep learning-related approaches.
	 The studies carried out in line with the purpose of this project
play a very important role on the way to Artificial General
Intelligence. It has shown that there are so many “simple”
things that deep learning algorithms cannot do that simply;
this step towards solving this problem will make a significant
contribution to the progress through the identification of
abstractions which has always been an extremely powerful tool
in math, and the right abstraction methods have the potential
to be game-changers in AI. While the main objective of this
research, generalization, has been achieved as shown by the
consistency in our results section, the common limitations in
AI such as poor ability to understand correlations, causations,
or ontological relationships separately, are not ultimately
solved and further studies are needed in this direction. Also,
we suggest working on completely different types of datasets
with a similar objective to obtain further insights for the main
goal.

MATERIALS AND METHODS
	 For this paper, we created abstraction and reasoning
tests which are expected to measure fluid intelligence
instead of crystallized intelligence. Construction of the grids

for a task involved picking the height and width of the output
grid, then filling each cell in the grid with a symbol (integer
between 0 and 9, which are visualized as colors). The data
sets were constructed using Notepad++ in JSON format.
Each task requires some simple cognitive abilities, but unlike
most IQ tests, it doesn’t include any mathematical or verbal
tasks. These tasks have no real-world counterpart and are
completely based on simple reasoning and abstraction
abilities. We developed a simple interface to make these
tasks easier to understand. Every task must be solvable
by humans. The tasks contain a task demonstration with
output as a solution to inputs of different colors and shapes
on a scalable(n×m) grids. Each task is solved with different
cognitive methods. After a few task demonstrations for a
randomly selected task, the test taker is asked to give an input
to solve and draw the output over the interface. The taker has
3 tries and if one of them is correct, the solution is considered
successful. Only exact solutions (all cells match the expected
response) are considered correct. Accordingly, training and
evaluation datasets contain both training and test input and
output pairs. Each task includes task demonstrations and
tests input-output pairs. This set is used to prototype the
algorithm. The evaluation set contains 400 evaluation tasks.
It allows the developer who created the algorithm to complete
and evaluate the algorithm. The test set includes 3 separate
sets of 100 tasks that were not seen by the developer who set
up the algorithm and were for final scoring.
	 We developed a DSL to express these most basic
concepts that people naturally accept and easily identify.
A framework has been developed on this premise. Various
functions have been written to analyze the sample tasks at
the matrix level and to apply basic transformations. All the
nodes in the DSL are either images or lists of images. An
image has a position, a size, and a 2D array of colors (0-9).
Black (0) is treated as transparent in most of the functions.
First, up to 3 or 4 unary transformations (modifications on
the basic features described to handle the data) to the input
image are applied sequentially with a search depth 3, depth 3
augmented with diagonal flips (times two diagonal flips), and
finally run depth 4 until running out of time or memory. Then,
a subset of the following is applied (in order): stack lists of
images→ move image to origin→ color all non-black pixels
some color (for each color in every training output) → resize
image (crop / pad) to fit output size. Finally, stack the results of
the transformations above to produce a final output. However,
an example such as in Figure 7 is still simple and needs better
enhancements to complete highly complex arbitrary tasks.
For this, we developed a genetic algorithm to combine and
organize the developed DSL with various functions. Once a
simple and powerful DSL was developed to express various
transformations on images, genetic algorithm organizes it
until the desired result is achieved.
	 This strategy works as follows: A random program is
created and run with a node. The best solution is kept. Based
on these best solutions, a new program is created, reevaluated

Figure 6. Producing larger data sets through augmentation of
the same training pairs. We used the augmented dataset on a
recurrent CNN for each task that predicts a probability distribution.

25 JUNE 2022 | VOL 5 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

and updated by mutation. This process continues over and
over until a solution is found. Because some multi-fitness
functions are used, our approach can be multi-purposed:
it can try to optimize more than one goal at the same time.
Since up to three predictions can be made for each task, the
genetic algorithm follows the three best candidates. Candidate
solutions will be a set of operations with the resulting task (the
original input matrices and the output matrices created when
applying the various set of functions to them). A score, which
expresses the number of pixels that differs between actual
outputs and candidate-generated outputs, will then determine
which candidate is better.
	 In the direction of this strategy, we created and implemented
an algorithm as represented in Figure 8. This algorithm follows
these steps: concepts such as task properties, matrix shape,
colors, and symmetries pass through the preprocessing stage
and are stored in 6 basic classes. These classes are Task,
Sample, Matrix, Shape, Grid, and Frontier. An object of the
Task class is created and located in the Task.py file. Based on
the information from the preprocessing, the task can be turned
into something easier to handle. For example, it might make
sense to change some colors, rotate some matrices, crop the
background, or ignore some grids. After the transformations
are done, three dummy candidates are looped to get the three
best candidates. At each iteration of the loop, the associated
functions are executed for each of the three best candidates
available, considering the properties stored in the object of
the Task class. Many different functions have been tried,
such as "moveShapes", "replicateShapes", "extendColor" or
"pixelwiseXorInGridSubmatrices", to name a few examples.
If any function produces a candidate that scores better than
any of the top three available candidates, that new candidate
is included in the top three candidates list and the worst one is
removed. The score is calculated by executing the functions
that lead to generating that candidate in the training samples
and checking how many pixels are wrong. Therefore, 0 is the
best possible score. The final candidates are obtained by

undoing the transformations carried out from the last three
candidates obtained.
	 The list of functions that can be executed for each
candidate is in “getPossibleOperations”. Many are executed
several times with different parameters. All of them contribute
to solving at least one of the tasks given in the training or
evaluation set.

Received: June 25, 2021
Accepted: February 01, 2022
Published: June 25, 2022

REFERENCES
1.	 “Artificial Intelligence: Go Master Lee Se-Dol Wins

against AlphaGo Program.” BBC News, BBC, www.bbc.
com/news/technology-35797102.amp

2.	 Asada, Minoru, et al. “Cognitive Developmental Robot-
ics: A Survey.” IEEE Transactions on Autonomous Men-
tal Development, vol. 1, no. 1, pp. 12-34, May 2009. doi:
10.1109/TAMD.2009.2021702

3.	 Goertzel, Ben and Cassio Pennachin, editors. Artificial
General Intelligence. Springer Berlin, 2007. link.library.
missouri.edu/portal/Artificial-general-intelligence-Ben-
Goertzel/hZxPPtxxmSY/.

4.	 Legg, Shane, and Marcus Hutter. “A Collection of
Definitions of Intelligence.” Frontiers in Artifical Intelli-
gence and Applications, vol. 157, pp. 17-24, 2007. doi:
10.48550/arXiv.0706.3639

5.	 Cosmides, Leda, and John Tooby. “Origins of Domain
Specificity: The Evolution of Functional Organization.”
Mapping the Mind: Domain Specificity in Cognition and
Culture. Edited by Lawrence A. Hirschfeld and Susan A.
Gelman, Cambridge: Cambridge UP, 1994. pp. 85-116.

6.	 Weidman, N. (2003), Steven Pinker. The Blank Slate:

Figure 7. A task demonstration, test input, and solution. The
reasoning is as simple as changing the color of the orange cells to
grey.

Figure 8. Flow charts representing the simplified algorithm. The
algorithm involves the preprocessing, transformations, loops, and
selection mechanism of the best three candidates.

25 JUNE 2022 | VOL 5 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

The Modern Denial of Human Nature. New York: Viking,
2002. doi: 10.1002/jhbs.10173

7.	 Allis, L. Victor. “A Knowledge-based Approach of
Connect-Four”, Journal of International Computer
Games, vol. 11, no. 4, pp.165, Oct. 1988. doi: 10.3233/
ICG-1988-11410

8.	 Schmid, Martin, et al. “Player of Games.” arXiv preprint,
6 December 2021. doi: 10.48550/arXiv.2112.03178

9.	 Bellemare, Marc, et al. “The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents.”
Journal of Artificial Intelligence Research, vol. 47, pp.
253-279, June 2013. doi: 10.1613/jair.3912

10.	 Perez-Liebana, Diego, et al. “The Multi-Agent Rein-
forcement Learning in MalmÖ (MARLÖ) Competition.”
Challenges in Machiine Learning (NIPS Workshop),
2018, 23 Jan. 2019. doi: 10.48550/arXiv.1901.08129

11.	 Osband, Ian, et al. “Behaviour Suite for Reinforcement
Learning.” arXiv preprint, 14 Feb. 2020. doi: 10.48550/
arXiv.1908.03568

12.	 Wang, Alex, et al. “GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Unders-
tanding.” arXiv preprint, 22 Feb. 2019. doi: https://doi.
org/10.48550/arXiv.1804.07461

13.	 Wang, Alex, et al. “SuperGLUE: A Stickier Bench-
mark for General-Purpose Language Understanding
Systems.” arXiv preprint, 2 May 2019. doi: https://doi.
org/10.48550/arXiv.1905.00537

14.	 Green, Bert F. Jr. “Intelligence and Computer Simula-
tion”. The New York Academy of Sciences, 1964. doi:
10.1111/j.2164-0947.1964.tb03486.x

15.	 Cattell, Raymond B. “Abilities: Their Structure, Growth,
and Action.” Houghton Mifflin, 1971.

16.	 Davis, R., Shrobe, H., and Peter Szolovits. “What is a
Knowledge Representation?” AI Magazine, vol. 14, no.
1, pp. 17-33, 1993.

17.	 Gilpin, W. “ Cellular automata as convolutional neural
networks.” Physical Review E, vol. 100, no. 3, 2019. doi:
10.1103/PhysRevE.100.032402

Copyright: © 2022 Isik, Aytekin, & Vurus. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

