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INTRODUCTION
Lawns, parks, golf courses, and school fields are 

common fixtures of the modern residential landscape. The 
prevalence of green spaces makes distribution of limited 
municipal water supplies a challenge (1). Overwatering and 

underwatering are common issues with consequences such 
as NO3-N groundwater contamination, soil leaching, sunken 
turfgrass, damaged hardscapes, and stagnant water that 
may serve as reservoirs of infectious agents (2, 3). In fact, 
landscape watering accounts for the highest percentage of 
household water usage at 30–65% nationally (4). Homeowners 
use 30–70% of their water outdoors, and it is estimated that 
50% of this water goes to waste due to evaporation, runoff, or 
overwatering (5). Moreover, residential landscapes are often 
given more water compared to the amount allocated towards 
ecosystem services (1). The evolving aridification issue has 
compounded watering challenges and led some cities to 
reduce nonfunctional turf or prioritize certain plants to reduce 
overall watering (6, 7).

Current water management and conservation strategies 
have not yielded a widely accessible tool to assess water 
use efficiency (WUE). Applicable methods include alternate 
sprinkler designs and smart irrigation (1). Weather-, sensor-, 
and schedule-guided irrigation are the most common 
strategies used to assess WUE (4). However, use of these 
technologies is limited to proactive consumers, price-
sensitive environmentalists, content retirees, and high-
end professionals, and thus is not widely accessible (8). 
Computational modeling and simulations have been used to 
develop better irrigation schemes and to test and optimize 
water management practices, but these are primarily relevant 
to policymaking and resource distribution, not the average 
person (4). Finally, existing water conservation apps track 
or estimate water usage without assessing lawn quality and 
WUE; those that generate suggested irrigation schedules are 
used primarily by the agriculture industry, not homeowners 
and communities (9). Thus, existing approaches are 
inaccessible or indirect to the public. 

We aimed to address this issue by developing a nonbiased, 
quantitative method for WUE assessment. We primarily 
investigated grass color and growth because these are the 
most visible, direct indicators of lawn quality and WUE for the 
public. WUE is defined as the amount of carbon assimilated 
as biomass per unit of water consumed by the plant; it is a 
measurement of plant growth (10). Thus, grass growth is a 
direct indicator of WUE. Changes in grass color mark the 
stages of drought stress: lawns turn bluish-gray at the first 
stage, patchy yellow at the second stage, greenish-brown at 
the pre-dormant stage, and completely brown at the dormant 

SUMMARY
Overwatering and underwatering grass are 
widespread issues with environmental and financial 
consequences. Current approaches to assessing 
grass water use efficiency (WUE) are inaccessible 
to the public. We developed an accessible method 
to assess grass WUE: combining smartphone 
imaging with open access color unmixing analysis. 
Images were converted from the RGB color space 
to the CIELAB color space using ImageJ—an open-
access, user-friendly software—to correct for 
uneven lighting without compromising image detail. 
We obtained parameters a* (unmixes green-to-red 
vector) and b* (unmixes blue-to-yellow vector). We 
hypothesized that WUE can be accurately determined 
from grass color and growth, which can be analyzed 
using CIELAB color unmixing. We tested how nine 
watering levels (100–900 mL every 4–5 days) affected 
Stenotaphrum secundatum (St. Augustine grass) over 
one month in Orange County, Southern California. 
Color was quantified using a*:b* ratios, growth was 
tracked using grass area, and pigment composition 
was analyzed using plot profiles. We analyzed whole 
samples in the uncontrolled real-world environment, 
individual leaves in a controlled homemade imaging 
box, and extracted pigments before and after paper 
chromatography. Results were clustered using 
Gaussian finite mixture models, implemented 
by R package ‘mclust’. Overall trends for grass 
coverage, a*:b* ratios, and pigment composition 
were consistent with real-world observations. 
Cluster analyses were consistent across image 
types, identified an ideal watering range (600–700 
mL), and differentiated between underwatered and 
overwatered grass. Our hypothesis was supported. 
Our method can be applied in automated irrigation 
systems or apps, providing grass WUE assessment 
for regular consumer use.   

Aniyah X. Shen¹, Francesco Palomba², Wanqi Jia¹, Michelle A. Digman²
¹University High School, Irvine, California
2University of California, Irvine, California

Assessing grass water use efficiency through 
smartphone imaging and ImageJ analysis

Article



27 July 2022  |  VOL 5  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

stage (11). Overwatering leads to thatch, fungal growth, 
weeds, and waterlogged grass, which all impact grass color 
(12). The balance of green and yellow color in a lawn impacts 
visual assessment of grass quality. These colors are the 
result of pigments involved in photosynthesis. Green color is 
due to chlorophyll a and chlorophyll b, which absorb light in 
the blue-violet and red-blue ranges of the visible spectrum, 
respectively, and reflect green wavelengths (13). Yellow color 
is due to carotenoids such as xanthophylls and β-carotene, 
which absorb light in the blue and blue-green ranges, 
respectively, and reflect yellow and orange wavelengths, 
respectively (14). Water stress directly impacts pigment levels 
by significantly decreasing chlorophyll a and b levels while 
significantly increasing carotenoid levels (15, 16). This leads 
to a decrease in green color and an increase in yellow color 
with decreasing WUE. Therefore, tracking grass color and 
growth allowed us to visualize and quantify the progression of 
grass quality and health depending on WUE. 

Our method combines accessible smartphone imaging of 
grass samples with ImageJ CIELAB image analysis. ImageJ 
is an open-source, Java-based software for image processing 
and analysis that was developed by the National Institutes 
of Health (NIH) and is extensively used across scientific 
disciplines (17, 18). The principle behind our method’s grass 
color analysis is the conversion of smartphone images from 
the RGB color space to the CIELAB color space using ImageJ 
software. 

A color space is a tool used to visualize and quantify 
colors on a coordinate system, forming a three-dimensional 
object with all color combinations in that color space (19). 
All color spaces utilize the principles of color unmixing: the 
mathematical representation of digital color through fractions 

of pure color components in color spaces. RGB is the most 
common color space used by digital images and contains 
three dependent component axes: R (red), G (green), and 
B (blue) (Figure 1a). Thus, the effects of varying brightness 
and lighting factors of uncontrolled, real-world imaging 
environments are inseparable from digital color perception. 
In contrast, CIELAB is a perceptually uniform color space 
that attempts to approximate human vision and unmixes 
brightness and lighting onto an independent L* (lightness) axis 
(19). CIELAB also unmixes digital color onto two dependent 
component axes: a* (unmixes the green to red vector) and 
b* (unmixes the blue to yellow vector) (Figure 1b). The pure 
components in CIELAB are, therefore, the L, a*, and b* 
vectors.

We wanted to determine whether combining CIELAB 
digital color unmixing with ImageJ analysis is an effective and 
accurate method for assessing grass WUE. We hypothesized 
that WUE can be accurately determined from grass color 
and growth. We predicted that CIELAB color unmixing 
would effectively analyze grass color and growth under the 
various lighting conditions of samples imaged in the real-
world environment by separating lighting from color. ImageJ 
provides tools for measuring area, which can be used to 
track grass coverage and other morphological parameters 
as additional indicators of water stress (17). We first tested if 
CIELAB effectively reduces lighting factors of the real world 
to analyze smartphone images of grass. We then tested if the 
digital color unmixing of ImageJ CIELAB analysis is consistent 
with the physical pigment unmixing of paper chromatography.

Our results showed that ImageJ CIELAB analysis 
effectively quantified and tracked grass color and growth 
over time. The analysis differentiated between underwatered, 

Figure 1. Comparison of RGB color space and CIELAB color space. (a) RGB has three dependent color axes, while (b) CIELAB has an 
independent L* axis for lighting and two dependent color axes. From negative to positive, the a* axis goes from green to red and the b* axis 
goes from blue to yellow. The RGB image is modified from Wikipedia under a Creative Commons license, and the CIELAB image is an original 
image created in Microsoft PowerPoint.
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ideal, and overwatered grass samples to determine an ideal 
watering range for WUE assessment. Our experiments 
indicated that CIELAB can effectively minimize lighting factors 
of uncontrolled, real-world environments and that the digital 
unmixing of CIELAB analysis is consistent with the physical 
unmixing of paper chromatography. Thus, we validated 
that smartphone imaging combined with ImageJ CIELAB 
analysis can effectively estimate grass WUE. Our results and 
methodology may serve as reference or inspiration for other 
researchers looking to develop the use of smartphone imaging 
and color space analysis to assess plants and environmental 
factors. Our study also has the potential to be expanded into 
practical applications for public and consumer use.

RESULTS
We analyzed the effects of 9 different watering levels 

(100–900 mL) on grass color and growth of Stenotaphrum 
secundatum (St. Augustine grass) samples over 1 month (July 
2020) in Orange County, Southern California (33° 43’ 03’’ 
N, -117° 49’ 52” W) using smartphone imaging and ImageJ 
CIELAB analysis. We watered each sample with a designated 
amount of water (100–900 mL for levels 1–9, respectively) 
every 4–5 days and imaged every 8–10 days. 

We analyzed three types of smartphone images: whole 
samples in an uncontrolled real-word environment, individual 
leaves in a controlled environment of a homemade imaging 
box, and extracted pigments before and after separation by 
paper chromatography. Whole samples in the uncontrolled 
real-world environment represent the most direct assessment 
and mimic human perception. We used individual leaves 
imaged in the controlled imaging box to test if ImageJ CIELAB 
analysis effectively reduces lighting factors of the real world 
to analyze grass color. Extracted pigments before and after 
separation compared the digital unmixing of CIELAB analysis 
with the physical unmixing of paper chromatography.

We imaged all 9 whole samples 5 times each and imaged 
3 leaves from each sample 4 times each, for a total of 45 
whole samples and 108 individual leaves imaged. We ran 
one paper chromatography strip per watering level on the last 
imaging day for a total of 9 unseparated pigment images and 
nine separated pigment images. We used samples from the 
first imaging day as the controls to compare how grass color 
and growth changed over time with different watering levels. 
We clustered the differences between the last imaging day 
and the first imaging day for grass area and a*:b* ratios using 
Gaussian finite mixture models, implemented by R package 
‘mclust’ (20).

Whole sample analysis
There was a visible loss of green color and coverage in 

levels 1–5 over 1 month in the raw whole sample images, 
while there was no loss of green color or coverage in levels 
6–9 (Figure 2a). Coverage refers to the percentage of the 
planter soil surface covered with grass when viewed from 
above. ImageJ analysis matched these observations. All 

samples showed an initial increase in grass area, but levels 
1–4 (cluster 1) decreased in coverage after late July to 49.51%, 
49.91%, 51.72%, and 66.18%, respectively. Only levels 5–9 
(cluster 2) maintained high coverage at 88.64%, 88.98%, 
99.62%, 99.68%, and 100.29%, respectively (Figure 2b). 
The whole sample grass area coverage trend reflected the 
decrease in grass area in lower levels and the maintenance 
of grass area in higher levels.

The color of levels 1–6 (cluster 1) increased in a*:b* 
ratios over time, while levels 7–9 (cluster 2) maintained 
more negative a*:b* ratios (Figure 2c). Negative a* values 
and positive b* values are indicators of green and yellow 
intensity, respectively, so more negative a*:b* ratios indicate 
greener grass color. Thus, the increasing a*:b* ratios in the 
lower watering levels reflected the visible loss of green color, 
while the maintained a*:b* ratios in the higher levels reflected 
maintenance of grass color.

Individual leaf analysis
There was a visible decrease in green color in levels 1–4 

and a maintenance of green color in levels 5–9 in the raw 
individual leaf images (Figure 3a). The a*:b* ratios of levels 
1–5 (cluster 1) increased over time, while the a*:b* ratios of 
levels 6–9 (cluster 2) consistently stayed in a negative initial 
range (-0.9, -0.7) (Figure 3b). The a*:b* values of the individual 
leaf analysis were consistent with those of the whole sample 
analysis. This consistency indicates that CIELAB digital 
unmixing effectively removes lighting noise of uncontrolled 
real-world imaging environments to analyze grass color.

Pigment composition
Samples with higher watering levels had visibly greater 

pigment density and intensity before and after separation in 
the raw chromatography images (Figure 4a). For unseparated 
pigments, levels 5–9 (cluster 2) had more negative a*:b* 
ratios in the range (-0.6, -0.4) compared to the a*:b* ratios of 
levels 1–4 (cluster 1) in the range (-0.4, -0.3) (Figure 4b). The 
more negative a*:b* ratios of levels 5–9 reflected higher green 
pigment intensity compared to lower levels.

For separated pigments, levels 6–9 (cluster 2) had more 
negative G values and more positive Y values compared to 
levels 1–5 (cluster 1). G values decreased from -27.132 (level 
1) to -224.844 (level 9), while Y values increased from 70.216 
(level 1) to 241.960 (level 9) (Figure 4c). The more negative 
G values and more positive Y values reflected higher overall 
pigment intensity in the higher levels. The consistent clustering 
results between unseparated and separated pigments 
showed that digital CIELAB unmixing is consistent with the 
physical unmixing of chromatography. These trends also 
reflected higher pigment production in levels 6–9 compared 
to levels 1–5. Matching plot profile trajectories showed that 
pigment composition remained consistent across all nine 
watering levels.
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Clustering analysis
We analyzed data collected from the nine watering 

levels for all seven metrics using mclust Gaussian mixture 
modeling. For each metric, we calculated the difference 
between the first imaging day and the last imaging day for 
each watering level. We grouped the nine differences into two 
clusters and compared the means of the clusters using two-
tailed two-sample t-tests. Across all seven metrics, levels 1–4 
were classified into cluster 1 (underwatered levels), levels 7–9 
were in cluster 2 (ideal and overwatered levels), and levels 5 
and 6 varied. Cluster 1 means were significantly different from 
cluster 2 means, as shown by p-values < 0.05 (Table 1).

Our clustering results revealed additional observations 
when analyzed together. While whole sample a*:b* ratios 
grouped levels 5 and 6 in underwatered cluster 1, whole 
sample coverage grouped both transition levels in ideal and 
overwatered cluster 2 (Figure 2b–c). This reflects how water 
stress manifested as changes in grass color before grass 
area was affected, which matches our real-world observations 
(Figure 2a). Consistent clustering results between the G and 
Y pigments and the a*:b* ratios of the unseparated pigments 
shows that CIELAB digital unmixing is consistent with the 
physical unmixing of paper chromatography (Figure 4b–c).

Data and observations indicated that level 6 was the 
critical watering point. From the clustering analysis, level 
6 varied between cluster 1 and cluster 2 depending on the 
metric, making it a transitional level between underwatered 
levels and ideal levels. We observed that level 6 showed 
visible signs of water stress at the whole sample level, 
including curling and yellow leaves. Levels 7–9, meanwhile, 
had vibrant green color and high grass density. Thus, we 
identified that the ideal watering level was between levels 6 
and 7, corresponding to an ideal watering range of 600–700 
mL and an a*:b* range of (-0.8, -0.7). 

DISCUSSION
The consistency of our whole sample and individual leaf 

analyses, and their agreement with real-world observations, 
strongly indicates that ImageJ CIELAB analysis can effectively 

analyze grass color and connect a*:b* values to WUE. 
ImageJ also analyzed grass area and pigment composition—
additional indicators of grass quality and water stress. Digital 
CIELAB unmixing reflected the loss of green color in lower 
watering levels and the maintenance of green color in higher 
watering levels. ImageJ area analysis reflected decreasing 
grass coverage of lower watering levels and maintenance 
of grass coverage of higher watering levels, demonstrating 
the impact of watering level on grass growth (10). The a*:b* 
values of the unseparated pigments and the G and Y values 
of the separated pigments both indicated that our method can 
effectively analyze pigment composition.

Overall, our experiment results were consistent across all 
three image types and all seven analyses. Using our method, 
we found that grass color, area, and pigment analysis 
reflected water levels and WUE. Thus, our hypothesis was 
supported. The consistency between the a*:b* ratios of 
whole samples and individual leaves suggested that CIELAB 
analysis effectively reduced lighting factors of the real-
world environment to analyze grass color. Additionally, the 
consistency between unseparated and separated pigment 
analyses indicated that digital unmixing was consistent with 
physical unmixing. 

We observed differences in grass color and growth 
among different watering levels in the field. To mathematically 
define this observation, we used clustering to group watering 
levels based on water use efficiency, as analyzed through our 
seven dependent variables. Since we assume that the data is 
normally distributed, we believe the parametric mclust method 
serves as an effective way of analyzing the data without prior 
knowledge of the number of clusters. 

We identified an ideal watering range of 600–700 mL, 
which scales to approximately 0.235 gallons of water per 
square foot of St. Augustine grass for a circular sample 
with a 1 ft radius. This is less than the currently suggested 
0.623 gallons of water per square foot for the average lawn 
(21). Our proposed ideal watering range consistently falls in 
the lower end of cluster 2, representing the least amount of 
water that still preserves grass color and growth. We used 

Table 1. Summary of all seven cluster analyses.

NOTE: The means of the two clusters for each metric were significantly different (p-value < 0.05). Levels 
1–4 were consistently in cluster 1 (underwatered levels), levels 7–9 were consistently in cluster 2 (ideal and 
overwatered levels), and levels 5 and 6 varied (transition levels). Overall, clustering results were consistent.
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the whole samples as the primary determinant of the ideal 
watering range and a*:b* range because they provide the 
most practical, direct assessment of grass WUE.

Our results are consistent with similar studies. In two 
previous studies, CIELAB effectively removed camera noise 
and was determined to be the ideal color space for assessing 
plant disease and leaf area (22, 23). Another study found that 
CIELAB had the highest sensitivity and specificity among 
a panel of color spaces (RGB, HSV, CIELAB, YCbCr) and 
studied potential applications of CIELAB technology in 
smart farming (24). Another study used the RGB to CIELAB 
conversion in a cascaded algorithm to successfully identify 
plant diseases (25). These studies all identified CIELAB as an 
ideal color space for plant image analysis and demonstrated 
that the RGB to CIELAB image analysis method can be used 
to accurately assess plant health.

In conclusion, our results demonstrated the effectiveness 
and potential of an accessible original approach to water 
conservation. Our work effectively combines smartphone 

imaging with ImageJ CIELAB analysis to analyze grass 
color, growth, and pigment composition to determine ideal 
watering ranges. Our study is consistent with previous studies 
using CIELAB analysis to analyze plants, but it is the first to 
use CIELAB unmixing to assess the effects of watering on 
grass color and growth. We also showed that digital CIELAB 
unmixing is consistent with the physical unmixing of paper 
chromatography, thereby validating the principles of color 
space conversion using an accessible lab technique. 

One limitation of our study is that we could have extended 
our experiments for a longer time to check if trends in grass 
color and growth continued. A longer study would have allowed 
us to determine whether signs of overwatering damage, 
which were appearing by the end of the experiment period, 
could be reflected in a*:b* ratio and coverage. Distinguishing 
between the yellowing and browning of sunken roots in 
severely overwatered grass and the yellowing and browning 
of underwatered grass also needs to be further developed. 
Finally, ImageJ CIELAB analysis was time-consuming when 

Figure 2. Grass color and growth in whole samples over one month of graded watering. (a) Raw whole sample images reflected 
macro changes in grass color and growth over one month of graded watering. (b) Grass coverage over one month of graded watering levels 
showed a decrease in coverage in levels 1–4 after July 21 and a maintenance of coverage in levels 5–9. (c) Whole sample a*:b* ratios over 
one month of graded watering showed increasing a*:b* ratios in levels 1–6 and consistently more negative a*:b* ratios in levels 7–9. The error 
bars represent standard deviation. 
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completed manually for each image, and human bias could 
have impacted ROI selection, although the effect of bias on 
results was likely insignificant because we analyzed average 
values. An immediate next step would be to write an algorithm 
for the digital unmixing analysis process. 

In addition, grass color is determined by many factors 
besides watering, including temperature, climate, soil type, 
fertilization, and grass type (26). Our study focused on 
the effects of watering, so additional studies need to be 
conducted to analyze the effects of geographic location, 

environment, soil composition, nutrient levels, and pH into 
the WUE assessment. A database of standard a*:b* ranges 
based on grass type and these additional factors would 
need to be constructed through additional experiments and 
simulations. Finally, having one grass sample per watering 
level resulted in a small sample size. Replicates would have 
presented a more accurate assessment of which samples 
were underwatered or overwatered.

Future experiments would also expand our method’s 
potential for practical applications. An immediate application 

Figure 3. Grass color and growth in individual leaves over one month of graded watering. (a) Raw individual leaf images reflected 
changes in grass color in the controlled imaging box environment. (b) The a*:b* ratios of individual leaves over one month of graded watering 
showed increasing a*:b* ratios in levels 1–5 and more negative a*:b* ratios in levels 6–9. The error bars represent standard deviation.
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would be an app that provides instant grass WUE assessment 
for consumer use. Ideally, users would photograph an area 
of grass and the app would calculate the a* and b* values, 
compare it to a standard set of a* and b* values determined 
by further experimentation, and mark the sample as 
underwatered, overwatered, or ideally watered. Additional 
applications include integrating our method into automated 
gardening systems to track and preserve grass WUE and the 
health of other plant species by linking watering and lighting 
apparatus (24). Scaling our method to satellite or drone 
imaging would enable application in residential parks, golf 
courses, and cities, or aid in socioeconomic and horticulture 
studies. Green space distribution, for example, is an indicator 
of economic equity and urban ecological environment 
with the potential to decrease health inequality between 
socioeconomic and sociodemographic groups (27-29). Urban 
green space is directly connected to urban horticulture—one 
solution to the growing food insecurity issue—and is currently 
studied using spatiotemporal simulations and analysis of 
open-source datasets (27, 30-31). Applying our method to 
large-scale images could provide direct analysis for the study 
of urban green space and horticulture development and 
impact. 

Our study validated the reliability of CIELAB image analysis 
independent of chromatography and the imaging box. For 
public use, CIELAB image analysis would be used directly, 

although calibration of the method to real-world systems 
would be necessary in application development processes. 
Such applications would make grass WUE assessment 
more accessible to the public and better equip homeowners, 
industries, and community leaders for water conservation. 

MATERIALS AND METHODS
Imaging box construction and calibration 	

The imaging box was constructed from two cardboard 
boxes. The first was a 40.5 cm x 30 cm x 28 cm cardboard 
box with a 31 cm x 21.5 cm opening cut out of the side facing 
the user. The second was a 45 cm x 33 cm x 10 cm box with 
a hole of radius 13 cm cut out of the top face. The second 
was inserted horizontally into the opening of the first with 
the hole facing upwards (Figure 5a). A sheet of blank white 
printer paper was used to cover the inside bottom of the first 
box directly below the hole, and four identical LED side-bar 
flashlights were secured on four 4 cm x 10 cm x 15 cm index 
card platforms oriented against each other and the sides 
of the box to form the 10 cm x 10 cm imaging space. We 
applied the photography principle of soft-boxing—when light 
is released through a layer of diffusion to minimize shadows 
and scatter light more evenly across an imaging space—to 
our light sources. Each flashlight was soft-boxed by taping 
two KIMTECH™ wipers over the light source (Figure 5b). 
A plastic clipboard was used to hold a ZenFone 3 Android 

Figure 4. Pigment composition analysis using paper pigment chromatography. (a) Raw unseparated pigment images and separated 
pigment images reflected greater pigment density and intensity with higher levels of watering. (b) The a*:b* ratios of unseparated pigments 
showed more negative a*:b* ratios in levels 5–9 compared to levels 1–4. We used ImageJ to calculate the standard deviations for a* and b* 
values in each image based on the a* and b* values of all pixels in the selected region of interest. (c) G and Y pigment values of separated 
pigments reflected the higher pigment production and overall pigment intensity of levels 6–9 compared to levels 1–5. 
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smartphone above the imaging space.
Calibration focused on addressing chromatic aberrations 

and astigmatism by creating uniform illumination and testing 
different configurations. Illumination was analyzed using plot 
profiles. Astigmatism was reduced using 1.7x digital zoom 
to discard border regions of astigmatism (Figure 5c). In our 
calibration imaging trials, we imaged red, green, and blue 
paper circles across nine regions in the imaging space and 
analyzed area, perimeter, aspect ratio, center of mass, and 
RGB color. Reference plots with the center region set to one 
for all calibration parameters were used to visualize and track 
the calibration process. The optimized configuration was 
chosen because it resulted in reference ratios closest to one 
(Figure 5d).

Grass sample preparation and watering
A soil mixture was prepared by hand-mixing 10 parts 

backyard soil with 1-part Sta-green lawn starter. Nine 1 L 
plastic planters were filled to the two-thirds mark with soil 
mixture. A 42 cm x 42 cm St. Augustine seedling plug was 
cut using a kitchen cleaver into nine 14 cm x 14 cm squares 
(Figure 6a). Each sample was trimmed into a circular shape 
using gardening shears, then potted into a plastic planter with 

soil mixture. The planters were placed in an area that received 
around six hours of sunlight daily. The watering scheme was 
determined by adding water in 100 mL increments to a sample 
until water began passing out of the bottom of the planter, 
which occurred around 500 mL. This amount of water was set 
as the fully watered midpoint level. To include underwatering 
and overwatering, the graded watering scheme was expanded 
to 100–900 mL (Figure 6b). For the first 10 days, all samples 
were given 600 mL twice per week to stabilize the seedlings 
in their new environment. Then, each pot was watered with 
its designated amount every 5 days from July 3 to July 17, 
then every 4 days from July 18 to August 1 due to rising daily 
temperatures. Watering was conducted by adding 100 mL 
increments of water evenly across the grass samples using a 
250 mL measuring cup.

Sample imaging	
We imaged and compared three distinct types of Android 

smartphone images. First, on every other watering day, 
each whole sample was imaged from 25–30 cm above the 
sample. Next, on every other imaging day, three individual 
leaves were selected from three designated, consistent 
regions spread across each whole sample and imaged in 

Figure 5. Imaging box construction and calibration procedures. (a) Schematic of the homemade imaging box from the exterior (left) 
and the imaging space (right). Smartphone imaging was done from above the sample space, which was illuminated with four soft-boxed 
LED flashlights. (b) The imaging box from the exterior (left), a soft-boxed LED flashlight (center), and the imaging space (right). (c) Imaging 
before and after calibration. Plot profiles (left) were used to track lighting calibration, with “flattening” of the plot profile reflecting more uniform 
illumination. Apple vs. Android smartphone and digital flash vs. no digital flash (center) were tested. Astigmatism was handled using 1.7x 
digital zoom (right), which discarded the border regions of inconsistency. (d) Example reference plots used to visualize and track calibration 
across area, perimeter, aspect ratio, center of mass, and RGB color. The center region was used as a reference and set to one for all 
parameters. Calibrated images yielded ratios closer to one for the other eight regions.
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the controlled environment of the homemade imaging box. 
Individual leaf imaging was performed immediately after leaf 
collection across all imaging days. Finally, extracted pigments 
before and after separation by paper chromatography were 
imaged in the imaging box. 

Pigment extraction and paper chromatography 	
Thirty mL of 9:1 petroleum ether (Home Science Materials) 

to acetone solvent (Target) was prepared in a 250 mL flask, 
which was immediately sealed with plastic wrap (Figure 6b). 

For each watering level, the three individual leaves from each 
whole sample were aligned over a 12 cm x 12 cm aluminum 
foil piece covered with plastic wrap and shredded with 
scissors. The foil was folded in half twice with the shredded 
leaves concentrated in the innermost corner. If the leaves 
were visibly dry, 1 mL of solvent was added. The corner was 
smashed gently with a hammer, the foil was stripped away, 
and the plastic wrap was twisted to form a snub with the 
smashed grass at one end. A toothpick was used to break 
a small hole at the tip of the snub, and a needle nose plier 

Figure 6. Grass sample preparation procedures. (a) Grass sample preparation using a soil mixture and St. Augustine seedling plugs. (b) 
Potted and stabilized grass samples on the first imaging day, labeled with the nine watering levels. Levels 1–9 were watered with 100–900 mL, 
respectively, every 5 days from July 3 to July 17, 2020, and every 4 days from July 18 to August 1, 2020. (c) Paper chromatography solvent 
preparation, pigment extraction procedures, and paper chromatography apparatus.

Figure 7. ImageJ CIELAB and plot profile analysis procedures. (a) Region of interest (ROI) selection in whole samples, individual leaves, 
and extracted pigments. (b) Color space conversion from RGB to CIELAB digitally unmixes the smartphone images onto the L*, a*, and 
b* axes. (c) Examples of the digitally unmixed a* and b* channel images for all three image types. (d) Labeled pigment separation and 
corresponding example a* and b* plot profiles. Dips in the a* plot profile and peaks in the b* plot profile correspond to different pigments.
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was used to squeeze two drops of pigment onto the loading 
line of a paper chromatography strip. The sample was imaged 
in the imaging box. Then, each chromatography strip was 
suspended using a chopstick over a flask and was run for 6–7 
minutes until pigments were visibly separated. Immediately 
after running, the sample was imaged in the imaging box.

ImageJ CIELAB analysis 	
Each image was opened in ImageJ, and the region of 

interest (ROI) was chosen and saved to the ROI Manager 
using the selection tools (Figure 7a). For individual leaves, 
each leaf was an independent ROI. For separated pigments, 
an overall ROI was selected by dragging the thickened line 
selection tool from the bottom of chlorophyll b through the 
top of carotene. Each pigment was also selected as an 
independent ROI. Each image was converted to CIELAB 
using the Color Space Converter plugin with separate 
channels (Figure 7b). The selected ROIs were applied to the 
unmixed images. Whole sample grass areas and a*:b* values 
were obtained using the measurement tool and histogram 
tool, respectively (Figure 7c). 

Plot profiles were used to analyze separated pigment 
images. The overall ROI plot profile was used to visualize 
pigment separation and composition. We assumed that green 
pigments contributed to green color and yellow pigments 
contributed to yellow color. Thus, individual pigment values 
were calculated by multiplying individual pigment ROI areas 
by mean a* (green) values for chlorophyll a and chlorophyll 
b (green pigments) and by mean b* (yellow) values for 
xanthophylls and carotene (yellow pigments) (13, 14) (Figure 
7d). G values were the sum of the chlorophyll pigment values, 
and Y values were the sum of the xanthophyll and carotene 
pigment values. G and Y values were only used for paper 
chromatography analysis to factor in smearing and varying 
degrees of pigment separation. We analyzed green and 
yellow color separately in the separated pigments to directly 
compare physical unmixing with digital unmixing.

Statistical analysis 	
Standard deviations for a*:b* ratios were calculated using 

the a* and b* values for each image. For whole samples, 
ImageJ calculated the standard deviations for a* and b* values 
in each image based on the a* and b* values of all pixels in 
the selected region of interest. We used the Taylor Series 
Methods with the assumption that covariance of a* and b* is 
equal to 0 to calculate standard deviations (32). For individual 
leaves, average a*:b* ratios and standard deviations were 
calculated using the three a*:b* ratios of the individual leaves 
of each watering level on each imaging day.

Differences in grass area, whole sample a*:b* ratios, and 
individual leaf a*:b* ratios on the last imaging day (August 
1) and the first imaging day (July 3) were analyzed using 
Gaussian finite mixture models, implemented by R package 
‘mclust’ (20). The analysis was used to determine the clusters 
of effects by nine watering levels (100–900 mL) based on 

measurements that reflected changes in grass area and color. 
Watering levels with similar experimental measurements 
were placed in the same cluster, whereas watering levels 
in different clusters had distinct effects on grass area and 
color. Unseparated pigment a*:b* values, representing digital 
unmixing, and green and yellow pigment values and ratios, 
representing physical unmixing, were used for clustering 
analysis and further comparison using two-tailed two-sample 
t-tests.
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