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liver scarring can occur when fibrosis becomes widespread 
and permanent, changing the liver’s internal structure and 
impairing its function (2). The most malignant manifestation 
of NASH is the development of hepatocellular carcinoma 
(HCC), or primary liver cancer (3). HCC can develop with or 
without cirrhosis, although it is more common in patients with 
cirrhosis (4).
	 Currently, there is no method to predict if a patient will 
progress from NAFLD or NASH to fibrosis or HCC. Since 
it is challenging to study NAFLD in humans due to genetic 
heterogeneity and ethical constraints, animal models, such as 
murine models, are used primarily to understand the disease 
pathology, investigate development mechanisms, and test 
therapeutic strategies (5). There are different approaches to 
induce NAFLD in mice, such as dietary modification (high-
fat diet or high-fat and sugar diet), genetic modification 
(leptin receptor-deficient db/db mice), or treatment with the 
steroid hormone dexamethasone (5). Moreover, since the 
cause of NAFLD is heterogeneous, it is difficult to determine 
the underlying molecular mechanism, especially when 
considering the multiple models used. Methods such as 
microarray and ribonucleic acid sequencing (RNA-Seq) 
allow for comprehensive profiling of genes associated with 
diseases (6). Both techniques analyze the transcriptome by 
measuring the relative mRNA level of hundreds of genes. 
Using a library of RNA probes, microarray measures 
hybridization with targeted transcripts. It can only assess the 
expression of transcripts that are on the curated list of RNA 
probes. For a more unbiased approach, RNA-Seq employs 
high-throughput shotgun sequencing of cDNA produced from 
all of the RNA transcripts in a sample. Unlike microarray, 
RNA-Seq can identify novel RNA or RNA variants (not limited 
to the RNA probes) (6).
	 Over the years, many studies have identified hepatic 
differentially expressed genes (DEGs) with high-throughput 
microarrays and RNA-Seq. While DEGs can be easily 
identified in a specific model used to study NAFLD, identifying 
genes that are consistently regulated between models have 
been difficult primarily due to the variability between studies 
(7).  Some studies have tried to analyze multiple datasets 
from mice with similar histopathological characterization 
to identify core DEGs. Hou et al. analyzed two microarray 
GEO datasets (GSE52748 and GSE57425) and identified 
293 DEGs that were up-regulated and 46 that were down-
regulated in both (5). Similarly, Xiang et al. identified only 12 
DEGs that were common between three different models 
(high-fat diet and sugar diet, leptin-receptor deficient (db/db 
mice), and dexamethasone-treated) by RNA-Seq (7). 
	 Our study examined five RNA-Seq datasets from mice 
administered different high-fat diets for different durations 
to identify common DEGs. In addition, we compared the 
conserved DEGs from the five RNA-Seq datasets to 
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SUMMARY
Numerous studies have shown that nonalcoholic fatty 
liver disease (NAFLD) progression is greatly affected 
by dysregulation of the hepatic transcriptome. 
Studies using high throughput technologies such 
as RNA Sequencing and microarray have identified 
multiple dysregulated genes in NAFLD. However, 
these studies utilized vastly different models 
resulting in few consensus biomarker genes. Thus, 
in this investigation, we evaluated various datasets 
to find genes that are similarly expressed across 
heterogeneous murine models. We hypothesized 
that there exists a core set of genes dysregulated in 
nonalcoholic steatohepatitis (NASH), a subtype of 
NAFLD characterized by steatosis and inflammation. 
These genes are involved in glucose and lipid 
metabolism as well as in the inflammatory responses 
and are the drivers of the observed tissue pathology. 
To test this hypothesis, we obtained publicly available 
Gene Expression Omnibus (GEO) datasets from the 
National Center for Biotechnology Information (NCBI) 
database and analyzed them to find differentially 
expressed genes. We also cross-referenced the 
expression of these genes with published studies for 
further validation. Our dataset analyses identified 18 
genes up-regulated and four down-regulated in at least 
six of seven datasets. Of these genes, glucokinase 
(Gck) was up-regulated, and the complement 
component C8 beta chain (C8b) was down-regulated 
in every murine dataset analyzed. Both exhibited 
a similar expression pattern in a human NAFLD 
dataset. Using approaches such as these, we believe 
that identifying consistently dysregulated mRNA 
can lead to the discovery of reliable biomarkers and 
potentially effective therapeutics in humans despite 
the heterogeneity of the experimental models used. 

INTRODUCTION
	 In developed countries, obesity, insulin resistance, and 
multiple other environmental and genetic factors have led to 
an increase in the incidence and prevalence of nonalcoholic 
fatty liver disease (NAFLD), which starts with a condition 
wherein the liver accumulates 5-6% fat, called steatosis. 
This accumulation of fat can lead to inflammation, resulting 
in nonalcoholic steatohepatitis (NASH). Clinically, NASH and 
liver fibrosis are rarely symptomatic until the development of 
advanced disease (1). When left untreated, NASH can lead 
to liver fibrosis, which is the formation of an abnormally large 
amount of scar tissue in the liver (1). Cirrhosis or severe 
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microarray DEGs identified by Hou et al. to add further 
selectivity in deriving potential biomarkers for NASH in 
murine models (5). We hypothesized that a core set of 
model-agnostic mRNA associated with NASH exists. We 
further hypothesized that some of these genes would likely 
be involved in gluconeogenesis, steroid biosynthesis, 
adipogenesis, and inflammatory responses since these 
processes are affected in NASH. In this study, we identified a 
set of genes that were differentially expressed with the same 
gene profile in multiple RNA-Seq datasets. Several of these 
genes have been implicated in development and progression 
of NAFLD.

RESULTS
	 Histological characterizations of tissues from mice 
used for RNA sequencing indicated that despite variability 
in treatments, mice fed high-fat diets developed at least 
steatosis with respect to the control or normal diets. Mice 

used in the various studies however exhibited different 
stages of NAFLD.  The mice used showed steatosis 
(GSE89296), early steatohepatitis (GSE135050), pronounced 
hepatocellular ballooning, lipoapoptosis, and progressive 
fibrosis (GSE164084) (9, 24, 25).
	 Principal component analysis (PCA) of the publicly 
available RNA Seq datasets revealed distinct clustering and 
separation of the control group (normal diet) from the high-fat 
diets (Figure 1). Despite some outliers seen among mice fed 
a normal diet or among the high-fat diet, there was sufficient 
separation between groups (normal vs. high fat) to use these 
datasets for further analyses. 
	 To identify DEGs, we calculated the log2 fold change 
(log2FC) for each gene and performed student t-tests on 
the log2 transformed data between dietary treatments. 
Each dataset contained a large number of genes that were 
differentially expressed between the two experimental 
conditions (p-value < 0.05, Figure 2). The log2FC showed the 

Figure 1: Principal Component Analysis (PCA) of the RNA Seq datasets. PCA plots were generated using iDEP. Normal diet (CTR, red) 
and High-Fat Diet (HFD, blue) are shown.

Figure 2: The volcano plots showing the differential expressed genes (DEGs) between the control diet and high-fat diet. Significantly 
expressed genes (p < 0.05, red) between the control and high-fat diet were calculated using Student T-tests. Plots were generated using 
GraphPad Prism.
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same range (within ± 5 log2FC) for four of the five datasets, 
except for GSE124777. This dataset also had the fewest 
number of significant DEGs, and the read counts for genes 
were scaled differently than the other four datasets. Despite 
the discrepancy, this dataset was included for comparison 
because of its previous characterization by Shon et al. (8). 
	 Of the five datasets, GSE164084 had the most DEGs 
(>3000) and was previously characterized (9). Mice in this 
dataset were treated with a high-fat diet for the longest duration 
(30 weeks) (9). GSE89296 and GSE135050 showed a similar 
profile expression of differentially expressed genes (Figure 
3). We further examined the datasets through hierarchical 
clustering, which revealed considerable heterogeneity, or 
variability, among the datasets (Figure 4). As seen in the 
dendrograms, genes with similar co-expression profiles were 
placed on the same branch or module of the clustering tree. 
Though datasets GSE89296 and GSE135050 displayed a 
similar number of expressed genes, there were more modules 

in GSE89296 than in GSE135050. The number of modules 
does not reflect the number of DEGs but variability among the 
DEGs. As seen in Figure 4, there was substantial variability 
in gene expression in these two datasets even though the 
mice were treated with high-fat diets for the same amount of 
time (12 weeks) (24, 25). In addition, although GSE164084 
had the most differentially expressed genes, it contained the 
fewest modules and the least amount of clustering, which 
seems to be affected by other factors besides the amount of 
time on a high fat diet.
	 A comparison of genes significantly up-regulated or 
down-regulated in the five datasets identified 20 that were 
down-regulated (log2FC < 0) and 128 that were up-regulated 
(log2FC > 0) in four of the five datasets. Among the down-
regulated genes, we identified that 5 genes were in the 
cholesterol biosynthesis and metabolism pathways (Mvk, 
Pmvk, Idl1, Slc10a1, and Hsd17b7), 3 were associated with 
the complement and coagulation cascades (Serpina1e, 
Serpina1d and C8b), 11 were liver associated expression, 
and 10 were associated with cell signaling. Of the genes up-
regulated, several were involved in the oxidation-reduction 
process, lipid metabolism, and AMPK signaling. Using 
the Database for Annotation Visualization and Integrated 
Discovery (DAVID), we also found that several of these genes 
were associated with lipid and carbohydrates metabolism 
(Figure 5). Of the 148 DEGs, only 9 genes showed the same 
expression profile in all five datasets (Table 1). No gene 
ontology (GO) enrichment could be found for these 9 DEGs.
Our comparison of DEGs to those identified by Xiang et al. 
revealed that Cyp2a22 was also up-regulated in two of the 
datasets that were analyzed (high fat and sugar diet and leptin 
deficient (db/db) mice) (7). C8b, Mup7, and Serpina1e were 
also down-regulated in these two models. None of the genes 
showed a similar profile in expression in the dexamethasone-
treated model. 
	 To further validate the genes identified from these 
datasets, the 148 DEGs (in four of the five datasets) were 
compared to genes previously identified in other studies. Hou 
et al. identified 293 genes up-regulated and 46 genes down-
regulated in mice fed a high fat diet for 12 weeks, which they 

Figure 3: Heatmaps of DEGs between the control diet and high-
fat diet. Heatmaps were generated using iDEP v0.94 to show DEGs 
between control diet (CTR) and High-Fat Diet (HFD).

Figure 4: Dendrograms of the RNA Seq Datasets. Dendrograms were generated using iDEP v0.94 to show heterogeneity between datasets 
and hierarchical clustering among the transcripts expressed. Modules or clades are denoted arbitrarily by color and represents grouping of 
genes with similar co-expression profiles. 
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identified by comparing microarray studies (GSE52748 and 
GSE57425) (5). When we compared the 148 genes identified 
from the five RNA-Seq datasets to 339 genes identified 
from two microarray datasets by Hou et al., we found 22 
genes consistently differentially expressed among the seven 
datasets (Table 1). Of these genes, Gck was up-regulated 
in all seven datasets and C8b was down-regulated in all of 
the datasets. No significant enrichment was detected in the 
GO pathways among the 22 genes. We further analyzed the 
genes using the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING), which revealed possible co-
expression interactions between a few of the proteins (Plin4, 
Cidea and Fitm1).
	 GENEVESTIGATOR® is a database that allows users to 

assess the expression of genes transcriptionally from publicly 
available datasets (microarray or RNA-Seq) (10). To test the 
validity of the 22 genes identified above, we evaluated them 
using GENEVESTIGATOR®. The 18 up-regulated genes 
were also significantly up-regulated with different degrees of 
expression in the mouse GEO dataset GSE110404 (p-value 
< 0.05). The 4 down-regulated genes were also significantly 
down-regulated in GSE110404, indicating that the 22 genes 
are reliable indicators for NAFLD in mice regardless of 
the dataset used (Figure 6). When these 22 DEGs were 
evaluated in the human dataset (GSE126848), there was less 
consistency in expression compared to the murine models. 
Most notably, conserved expression of Gck and C8b was 
found in all murine datasets analyzed. Therefore, the up-

Figure 5: GO Pathways associated with the DEGs. GO pathways were determined using DAVID and organized into graphs. The 
graphs show the number of significantly associated (p < 0.05) genes in (A) biological processes, (B) cellular components, (C) molecular 
function, and (D) various metabolic pathways that are involved.

Figure 6: GENEVESTIGATOR® analysis of the 22 DEGs identified. Genes differentially expressed (p < 0.05) in RNA-Seq and microarray 
datasets are shown. The color in the boxes show the log2FC, with brighter colors indicating greater change. Gck and C8b were differentially 
expressed with same expression pattern in the murine datasets evaluated.

Table 1: Genes that were differentially expressed in the RNA-Seq and microarray datasets. C8b and Gck were differentially expressed 
in all seven datasets.
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regulation of Gck and the down-regulation of C8b could likely 
be biomarkers for NAFLD progression in both humans and 
mice (Figure 6).

DISCUSSION
	 Identifying consistently dysregulated mRNA expression 
can lead to the discovery of reliable biomarkers and potentially 
effective therapeutics in humans despite the heterogeneity of 
the experimental models used. The DEGs identified in this 
study are related to NASH since the mice used for RNA-
Seq displayed various histological manifestation of NAFLD. 
Moreover, correlating the genes identified from the five RNA-
Seq datasets with the two microarray datasets (GSE52748 
and GSE57425) analyzed by Hou et al. provide further support 
that these 22 DEGs can be used as potential biomarkers for 
NAFLD when compared to the controls used in this study (5). 
	 Since NAFLD is a continuous spectrum of pathologies 
(steatosis, fibrosis, cirrhosis and HCC) and the DEGs identified 
were from mice with different histological manifestations, 
these 22 DEGs may be used to assess multiple stages of 
NAFLD. In fact, several of them have been shown to be also 
associated with different stages of NAFLD in other studies. 
Genes that were identified in this study that are associated 
with hepatic steatosis in mice include adenosine receptor A1 
(ADORA1) and nicotinamide N-methyltransferase (NNMT). 
ADORA1 was shown to be positively correlated with liver 
steatosis in NAFLD patients (11). NNMT is expressed 
predominantly in the liver and gene variants have been 
associated with the development of NASH. It has been 
shown to promote liver steatosis and fibrosis (12). In both 
humans and mice, an increase in cell death-inducing DFFA-
like effector a (Cidea) is also associated with an increase in 
hepatic steatosis. Overexpression of Cidea in mice resulted in 
increased lipid accumulation and knockout of Cidea reduced 
lipid accumulation (15). Perilin 4 (Plin4) is a major lipid droplet 
(LP) protein and is selectively expressed in adipocytes (16). 
Knockout of Plin4 in mice resulted in decrease expression 
of genes involved in lipogenesis in the liver (17). Besides 
steatosis, DEGs identified in this study has been shown to 
play a role in development of liver fibrosis and hepatocellular 
carcinoma. CD5-like protein (CD5L) has been shown to be 
involved in liver fibrosis (19). Sterile Alpha Motif Domain-
containing 9-like (SAMD9L), Steroid 5 alpha-reductase 3 
(SRD5A3), and Apolipoprotein M (ApoM) have been shown 
to play roles in the development of hepatocellular carcinoma 
(20-22).  Although Gck and C8b were consistently deregulated 

in all of the datasets, there are no studies implicating these 
genes in specific stages of NAFLD. Gck however has been 
linked to insulin sensitivity in humans and mice (13).
Our investigation had some limitations that need to be 
addressed in future studies. Not all of the datasets included 
physiological data describing the stages of NAFLD. 
Additionally, many of these genes were not validated by 
other techniques, like qRT-PCR. Future investigations would 
examine the expression of these genes in various murine 
models and clinical specimen by qRT-PCR and to determine 
if these are expressed continuously or in specific stages of 
NAFLD.
	 Over the last decade, obesity and insulin resistance have 
been associated with an increase in the occurrence of NAFLD 
(14). The exact mechanisms of NAFLD remain unresolved 
and often conflicting mechanisms are identified as a result 
of different models. DEGs found in one study may not be 
shown to be involved in another or have an opposite direction 
of expression. Moreover, the methods used (RNA-Seq vs. 
microarrays) can also influence the identification of DEGs. 
This study identified DEGs regardless of the methodology 
and the treatment used in the murine models. The 22 DEGs 
identified in our study shared the same gene profile in many 
datasets, and several of these have been implicated in 
numerous studies to be involved in NAFLD. Gck and C8b 
seem to be particularly useful biomarkers for assessing 
NAFLD in both mice and humans, and the Cidea and Plin4 
seem to belong to an important hub for lipid localization and 
metabolism. Therefore, the DEGs identified in this study 
could be used as potential diagnostic and therapeutic targets 
for NAFLD. 

MATERIALS AND METHODS
Obtaining RNA-Seq Datasets
	 In order to obtain RNA-Seq datasets, the GEO datasets 
were queried on the NCBI database. Specific keywords were 
used to find these datasets, such as “NASH,” “NAFLD,” “high 
fat diet,” “fast food diet,” and “hepatocellular carcinoma.” Five 
datasets were identified with accession numbers: GSE145665 
(23), GSE135050 (24), GSE89296 (25), GSE124777 (8) and 
GSE164084 (9).  All of the datasets obtained are open-
source to the public. A summary of the treatments of mice 
with high-fat diets is indicated in Table 2.  All datasets were 
downloaded and converted into a .CSV file. Some of the 
reads in the dataset were corrupted when downloading, 
indicated by a zero read for each sample of the data. These 

Table 2: Summary of the GEO datasets obtained. Each of the datasets were generated from mice to get relatively uniform data. The 
treatments of the mice differed but were all relatively similar in that they were fed a high fat diet. 
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genes were removed from the data entirely, and any excess 
samples from other treatments that were not being used were 
removed from the datasets, so the only data present were the 
control samples and the high-fat diet samples. 

Analysis of the GEO datasets
	 The mRNA counts from the GEO datasets were 
normalized integrated Differential Expression and Pathway 
analysis or iDEP (26). iDEP 0.94 is a web-based tool used to 
analyze RNA-seq data that was used to create visualizations, 
such as heatmaps and PCA plots, in addition to the previously 
mentioned normalization plots (26). DEGs were determined 
using Microsoft Excel using the formula = TTEST ((sham 
Levels), (high-fat diet Levels), 2, 2) for a 2-sample equal 
variance, 2 tailed, t-test. The log2FC was calculated using the 
formula = LOG ((mean NASH level/mean high-fat diet level), 2). 
The -log10 p-value was calculated using the formula = -LOG 
(p-value, 10). Volcano plots were created using GraphPad 
Prism version 9.1.1. The DAVID v6.8 was used to identify the 
Gene Ontology (GO) of the differentially expressed genes in 
multiple datasets. STRING v11.5 was used to create networks 
of differentially expressed mRNA and determine the pathways 
these genes play a role in. GENEVESTIGATOR® was used to 
validate the expressions of selected DEGs (10). 
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