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Article

middle-income countries who have CRDs has always been 
particularly challenging (3). Long-term, life-threatening CRDs 
such as asthma, chronic obstructive pulmonary disease 
(COPD), and bronchiectasis afflict people of all ages, 
genders, and races worldwide. As of 2017, approximately 
545 million individuals or 7.4% of the world’s population have 
chronic respiratory illnesses (4). Asthma, emphysema, and 
COPD are characterized by airway inflammation, blockage, 
and remodeling (5). Patients with chronic airway disorders 
are at increased risk of hospitalization. For example, 
between 3% and 20% of patients with COPD make at least 
one hospital visit per year (6). Asthma and COPD are the 
most prevalent CRDs, affecting 358 and 174 million people, 
respectively, with COPD itself being the third leading cause 
of death worldwide, causing 3.23 million deaths (7, 8). 
Treatment of both illnesses faces several obstacles, including 
under and overdiagnosis, unknown pathophysiology, and a 
lack of consistent categorization making effective diagnosis 
crucial (9). Therefore, this calls for effective determining 
of the bronchial blockages that lead to diagnosis of these 
CRDs (and other respiratory illnesses) to allow for effective 
treatment and therapy options to be employed. 

Past research has used multiple methodologies and 
clinical to improve the diagnosis of respiratory illnesses, like 
CRDs, due to the lack of standardized biomarkers for every 
disease. There is ongoing research going on to improve the 
framework of these methodologies. For example, one study 
used machine learning (ML) and computer-based acoustical 
techniques to construct an artificial intelligence (AI) system 
that could identify the pathophysiology of airways (10). 
However, this study was not conducted in a clinical setting, 
simply proving the relationship between sound and airflow. 
Our study expands on this concept through modeling the 
respiratory condition. However, if proven applicable, ourstudy 
could help respiratory airway management greatly. In addition, 
another study used an exhaled breath condensate (EBC) 
metabolome to construct a random forest classifier, which 
could identify asthma patients with 80% sensitivity and 75% 
specificity with a sample size of 89 asthmatic patients and 20 
healthy controls (11). This research helped in the identification 
of asthma endotypes, or specific phenotype clusters, through 
EBC data in machine learning, demonstrating the potential 
of AI as a new diagnostic measure of respiratory illnesses 
that can incorporate various underlying pathologies (11). This 
study also shows the ability to use the chemical composition 
of breath to analyze CRDs but is limited in its clinical utility 
due to the difficulties of consistent metabolite extraction and 
lack of precision therapies (11).

In respiratory analysis, the state of the bronchi and alveoli 
is an important factor for the identification and severity 
of respiratory illnesses, especially common diseases like 
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diagnosing bronchial blockages with artificial lung

SUMMARY
Many common respiratory illnesses like bronchitis, 
asthma, and chronic obstructive pulmonary 
disease (COPD) lead to bronchial inflammation and, 
subsequently, a blockage. However, there are many 
difficulties in measuring the severity of the blockage. 
To detect the blockages associated with these 
illnesses, most medical staff have relied on patients’ 
descriptions of their symptoms or the doctor’s 
experience or monitoring through a medical device 
like the stethoscope. However, these diagnostic 
measures are error-prone and time-consuming, 
leading to frequent misdiagnosis and limitations 
in continuous perioperative monitoring. Therefore, 
a numeric metric to determine the degree of the 
blockage severity is necessary. To tackle this demand, 
we aimed to develop a novel human respiratory 
model and design a deep-learning program that can 
constantly monitor and report bronchial blockage 
by recording breath sounds in a non-intrusive way. 
A bronchial lung model would provide doctors or 
medical staff with a better understanding of patients’ 
conditions and allow faster more targeted treatment. 
Performing these experiments demands a new 
design of the artificial respiratory system. Alternative 
to using human testing, there is more accuracy in 
characterizing human airways and obtaining various 
sizes of blockage samples. As a result, we developed 
a Google TensorFlow deep learning program that 
recognizes bronchial blockages through sound 
recordings at a >75% success rate. Through the 
experiments, the deep learning program had a 99.28% 
recognition rate when tested on eight representative 
blockages, demonstrating the potential of sound-
based deep learning programs as a method of 
bronchial blockage analysis to diagnose respiratory 
illnesses.

INTRODUCTION
Air pollution, chemicals, dust, and recurrent respiratory 

illnesses in childhood all increase the risk of lung cancer 
(1). This calls for effective diagnosis of respiratory illnesses, 
especially for vulnerable populations like the youth. Even 
though chronic respiratory diseases (CRDs) cannot be cured, 
several therapy options like breathing techniques can assist 
people in managing their symptoms and improving their 
quality of life (2). 

Also, meeting the needs of individuals living in low and 

Eddie Bae1, Johnny Kim2

1Bellarmine College Preparatory, San Jose, California
2Rambus Inc., Santa Clara, California



22 JANUARY 2024  |  VOL 7  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-004

asthma and COPD (12). Specifically in bronchial airways, 
previous research theorized determining sound-producing 
locations (via blockages) within the bronchi via mathematical 
analysis and equations to determine the state of the bronchi 
and alveoli (13).

Therefore, our research aimed to build upon these past 
research models to use sound in the analysis of bronchial 
airway blockages, to help detect these inflammations that 
are indicative of respiratory illnesses including many different 
CRDs. We proposed a new artificial model of the human 
respiratory system to test the breath sounds of the bronchial 
airways and utilized a Google TensorFlow deep learning 
algorithm to recognize the breath sounds and determine the 
blockage model automatically. Our study makes several key 
innovations by proposing a new artificial lung system and 
using deep learning to focus specifically on the bronchi as 
a more applicable solution due to the high-power AI system 
that diagnoses these blockages not just simply exploring the 
relationship (13). In this study, we hypothesized that different 
shapes of bronchial airways lead to different frequencies of 
breath sounds so the deep learning program could determine 
the different 3D printed bronchial blockages at a recognition 
rate of over 75% for a significant accuracy rate. Ultimately, 
the goal of this research is to demonstrate the potential of 
a sound-based deep learning program as a non-invasive, 
efficient indicator of bronchial blockage to increase accuracy 
in respiratory illness diagnosis and efficiency in airway 
management.  

RESULTS
The goal of this research was to develop a sound-based 

deep-learning program that recognizes 3D-printed bronchial 
blockages at a recognition rate of over 75%. We referenced 
current data on the anatomy of the human respiratory system 
to propose a respiratory system model (Figure 1A-B). With 

this respiratory system model, we measured the breath 
sounds and the rate of the airflow with the various diameters 
of bronchi inflammation and subsequent blockage models 
to emulate the relationship between sound, airflow, and 
bronchial tube diameter. 

We converted the audio data into spectrograms, which 
allows the Google TensorFlow deep learning program 
to perform image recognition via a simple convolutional 
neural network (CNN). As the program converted the data 
into waveform graphs, we concluded that as the diameter 
decreased, the amplitude of sound was more compact, closer 
towards the mean for all shapes (Figure 2A). The different 
shapes also resulted in different amplitudes, for example, 
the amplitude of circle-shaped blockages in general was 
less compact than the amplitudes of the rectangle-shaped 
blockages. 

Colors represent the amplitude of frequency (in decibels), 
with darker/stronger colors indicating greater amplitudes 
at that frequency. The darker the colors, the higher the 
frequency. Smaller diameters yielded higher frequencies for 
all shapes. The magnitude of high sounds and frequencies 
ascended in order of ovals, circles, and rectangles (Figure 
2B). This graphical representation of the sounds indicated 
a difference in the sound that allowed the deep learning 
program to identify and train its recognition system. 

With the given sound data generated by the different-
sized blockages, we trained the deep learning algorithm in 
the Google Tensor Flow framework, an open-source software 
library for deep learning. This method of AI learning uses 
a basic automatic speech recognition (ASR) model. The 
program used these spectrograms to train the model using 
a CNN to perform image recognition on these converted 
graphs. With continuous recognition training, the accuracy 
of the detection gradually approached close to 1, ultimately 
achieving a 99% success rate. Mean squared error (MSE) [a 
measure of how close a regression line is to the data points], 
and val_loss/test loss [errors when unknown/unfamiliar data 
is introduced] both approached 0 which indicated nearly no 

Figure 1: Modeling of human respiratory system. A) Human 
respiratory system (courtesy of ref. 16). B) Heuristic model of the 
human respiratory system

Figure 2: Waveform and Spectrogram graphical representation 
of differences in sound. A) Waveform graph with normalized 
amplitude of sound on a scale of -1.0 to 1.0. B) Spectrogram 
(converted from waveform) showing frequency changes over time. 
For both, the top row represents differences within different sizes of 
circle (C) shaped bronchial openings. The middle row represents the 
differences within different shapes (C1, O1, R1) with similar larger 
bronchial opening sizes (1 is the largest opening). The bottom row 
represents the differences within different sizes of oval shaped (O) 
bronchial openings. 
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loss/error in the detection (Figure 3). The training and testing 
samples were split by the deep learning program using 
the train_test_split function. While the MSE and val_loss 
approached 0, the accuracy reached values of 0.9928, a 
near 100% accuracy. The result of the inference yielded a 
100% classification rate with no false positives or negatives 
for the circular blockages as representative samples for the 
other shapes as they were easy to measure and had clearer 
dimensions (Figure 4). 

DISCUSSION
The goal of this research was to develop a deep learning 

model that could recognize bronchial blockages at a 
recognition rate of over 75% and our model reached a 99.28% 
accuracy rate. Along with the MSE and val_loss values 
approaching zero, this study affirmed its hypothesis and 
concluded the possibility of recognizing bronchial blockages 
based on sound through this artificial 3-D printed model. This 
research introduced and implemented an artificial intelligence 

algorithm, deep learning by Google TensorFlow, using CNN 
for an ASR model that accurately classified various types and 
severities of simulated bronchi blockages. This deep learning 
program showed over 99% accuracy, along with near-zero 
values for MSE and val_loss, indicating that the computer 
algorithm can accurately analyze differences in sound 
through spectrograms. We used FFT to model the sound data 
and discovered visual differences between these frequency-
domain graphs. The complexity of the data prevented an 
accurate analysis through mathematical equations. However, 
the present study demonstrates that deep learning algorithms 
can accurately analyze the sound and changes in sound 
through spectrograms and waveform graphs.

In the past, researchers have performed mathematical 
analyses of respiratory sounds to monitor the state of human 
airways. However, this was done to analyze the general health 
of the airways and the location of the sound source rather than 
identify bronchial blockages. Our research, however, uses 
computer analysis through Google TensorFlow to overcome 
the limitations of standard mathematical expressions. This 
program conducts a more precise analysis due to the high 
computing power of deep learning and the accuracy in the 
image recognition of spectrograms. Artificial intelligence has 
also been explored in the field of clinical pulmonology through 
the analysis of respiratory muscles (9). However, this prior 
analysis focused on respiratory muscle strength, as their goal 
was to support medical decision-making in diagnosis and 
required several different data points. We explored bronchial 
blockages with the goal of helping differential diagnosis 
of these respiratory illnesses as it provides more detailed 
information on the health of the airways. Also, this method of 
diagnosing these respiratory illnesses allows for affordable 
and nonintrusive monitoring. We used the singular variable 
of sound, allowing for a more convenient and less time-
consuming analysis. 

We used computer analysis of sound, allowing pattern 
recognition for a more holistic interpretation. No recognition 
systems exist to identify bronchial blockage shapes and 
sizes in clinical practice, especially through AI. Through our 
deep learning program, we hope to develop an app that will 
allow easy and accessible real-time analysis for bronchial 
blockages. However, while encouraging, our results should 
be interpreted in light of several limitations. First, since the 
bronchial blockages were created out of the 3D printing 
plastic (polylactic acid substrate), this research cannot exactly 
emulate bronchi blockages in humans as the plastic is typically 
stiffer and lighter than the human counterpart. Also, even if 
human subjects were used, blockages and inflammation vary 
along the bronchial tubes, requiring a more complex method 
of quantifying these blockages. This research also cannot 
connect bronchi blockages to specific respiratory illnesses, 
which would require a variety of human trials to determine 
whether the AI can identify the possible illnesses. Therefore, 
these questions are essential for future research that works 
on the implementation of this deep learning program. 

In summary, this research proposed a new artificial 
respiratory system focused on the bronchial airways to test 
various shapes and sizes of 3D-printed bronchial blockages 
and record the sounds the stimulated breathing creates. This 
demonstrated the possibility of producing a controllable model 
and various bronchial blockage shapes for future applications 
of further precision in modeling nonlinear, variable bronchial 

Figure 3: Inference process results of deep learning training. 
Mean squared error (a measure of how close a regression line is 
to the data points), and val_loss/test loss (errors when unknown/
unfamiliar data is introduced) both approached 0.

Figure 4: Confusion Matrix of Deep Learning Inference. The 
color legend shows the amount of samples tested for that specific 
bronchial blockage model, the black 0 boxes show that there were 
no false positives or negatives.
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inflammation that leads to blockages. Our Deep Learning 
program yielded a >99% recognition rate, and our study 
serves as a proof of concept that bronchial blockage shapes 
can be differentiated by sound. Overall, this research paves 
the way for constant and non-invasive methods to monitor 
bronchial health, an essential indicator for many respiratory 
illnesses such as bronchitis, asthma, and COPD. 

MATERIALS AND METHODS
After the various sizes of bronchial blockage models 

were 3D-printed, we put these models into our artificial 
lung system, and sound data was recorded. We moved the 
recording throughout the 20 recordings of each blockage 
size, alternating between placing it left or right of the model. 
Blockages were labeled Cx, Ox, Rx, with x being a number 
with bronchi diameter decreasing as x increases. The C, 
O, and R labeled the shapes circle, oval, and rectangle 
respectively – different shapes used to represent the nonlinear, 
varying shapes of bronchial blockages (Figure 5). Data for 
all blockages was thus recorded and fed into the machine 
learning model. Defined shapes representative of airways 
(Cx = circle, Ox = oval, Rx =rectangular, Tx = test shapes, 
diameter decreases as x increases). We printed these shapes, 
the blocker jig, and all other structural components using 3D 
printing filament that has polylactic acid (PLA) as the substrate 
(HATCHBOX, Cat#B09WWJSCCS) using 3D printer (Creality 
3D, Cat#B07K3SZBHJ). We used Ultimaker Cura 3D printing 
software to create various shapes and sizes in order to 
best emulate the high variety of bronchial blockages. This 
software also allowed for the precise fitting of the blockage 
components into the blocker jig). This respiratory model used 
a system of tubes and blowers to simulate the trachea and 
bronchi based on the average adult human proportions. This 
respiratory system consisted of airways with 8mm diameters 
approximated to the average adult human bronchi diameters 
(14). Exhalation wind speed was calibrated to approximate 
the average human exhalation rates of around 2-4 m/s (15). 
With the given sound data generated by the respiratory model 

for different-sized blockages, we trained the deep learning 
algorithm in a Google Tensor Flow framework using a basic 
automatic speech recognition (ASR) model. ASR allows for 
the recognition of sounds through short audio clips. The audio 
data is converted into spectrograms, which allows the deep 
learning program to perform image recognition via a simple 
CNN. The program converted the data into waveform graphs. 
The deep learning program then converted the waveform 
graphs into spectrograms by using a Short Time Fourier 
Transform (STFT). The spectrogram had time as the x-axis 
(s/16000) and frequency as the y-axis (Hz).

Experiment setup
We recorded sound from a linear Pulse-Code Modulation 

(PCM) recorder (Tascam, Cat #B07N1KLVNG) and wind 
speeds and temperature were captured using an anemometer 
(UNI-T, Cat #B07CKY5P2H). We continuously moved the 
recorder from being on the left or right or being far away 
or close to the model throughout the different recordings to 
ensure that recording device location was not a factor. We 
used the Audacity Sound Tool to standardize the various 
recordings by cutting them into one-second clips and 
changing sampling rates to 16 kHz. Then we duplicated these 
20 recordings for each blockage size to create at least 960 
copies of the recordings to run in the TensorFlow program. 
We used Google’s open-source software library TensorFlow 
to import necessary data, standardize the data for testing, 
train the deep learning model, and display the results (see 
Figure 6 for flow chart). Specifically, we used and modified a 
simple ASR model for the recognition of the different bronchial 
blockages due to the shortness of the breathing clips as the 
breathing sounds remain relatively consistent. The sound 
clips were originally in the waveform (WAV) format and 

Figure 6: Flow chart representing the implementation of Deep 
Learning. Tracks the steps from start of TensorFlow code to the 
display of the result after analyzing the sound files.

Figure 5: Bronchial blockage models tested. Blockages were 
labeled Cx, Ox, Rx, with x being a number with bronchi diameter 
decreasing as x increases. The C, O, and R labeled the shapes 
circle, oval, and rectangle respectively.
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converted to spectrograms using STFT to display frequency 
changes over time in a 2D image for the training model. The 
model used a convolutional neural network (CNN) for image 
recognition on the transformed spectrogram images that track 
the sound over a time-domain for image recognition. For the 
use in this model, preprocessing is done: resizing downsizes 
the sample to help increase the training speed of the model 
and normalization is done to every pixel to standardize them 
based on mean and standard deviation. 
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