
19 JUNE 2023  |  VOL 6  |  1Journal of Emerging Investigators  •  www.emerginginvestigators.org

and computational simulation for preclinical research, and 
improve the quality of patient selection and clinical trial 
optimization (2, 3). In our study, we aimed to develop a 
novel metric for assessing synthetic complexity of organic 
medicines, including small molecules and natural products, 
through a different machine learning methodology. Several 
research groups have previously defined metrics for synthetic 
accessibility using a variety of data about a molecule, such 
as a graph of the molecule or starting material complexity 
(4,5,6,7,8). However, the application of machine learning to 
this domain remains relatively nascent with cheminformatic 
algorithms dominating previous approaches.

Studies of molecular complexity for synthetic analysis and 
theories on convergence involving multicomponent reactions 
date as far back as 1982 (4). Previous computational scores 
used to define difficulty of synthesis have utilized algorithms 
to analyze aspects of graph theory, a molecular connectivity 
index, molecular graph symmetry, or frequency of structural 
features as factors of synthetic accessibility (5, 6). However, 
the constantly evolving field of chemical synthesis outpaces 
the rigid metrics previously established and thus motivates 
development of a more flexible metric. 

To compensate for metric rigidity, algorithms have been 
tuned for optimization, although differences in experiences 
between researchers can result in differences between 
algorithms (7). Due to the constructive nature of molecules, a 
more complex molecule can be split up into fragments when 
calculating synthetic accessibility as well. This allows for the 
detection of significant moieties either by a) using complexity 
scores for each fragment that we combined to yield a 
comprehensive metric or b) analysis of the frequencies of the 
fragments in databases (8,9). A popular metric, SAScore by 
Ertl and Schuffenhauer, utilizes a fragment-based approach 
that combines both methodologies (8). The claim is that 
fragments that are more frequently present in databases are 
more easily accessible, and therefore rarer fragments do not 
appear as much due to difficulty in synthesis. A shortcoming of 
this method is that the fragments analyzed are typically those 
from small molecules, thereby rendering it difficult to apply 
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SUMMARY
Irrespective of the final application of a molecule, 
synthetic accessibility is the rate-determining step in 
discovering and developing novel entities. However, 
synthetic complexity is challenging to quantify as 
a single metric, since it is a composite of several 
measurable metrics, some of which include cost, 
safety, and availability. Moreover, defining a single 
synthetic accessibility metric for both natural products 
and non-natural products poses yet another challenge 
given the structural distinctions between these two 
classes of compounds. Here, we propose a model for 
synthetic accessibility of all chemical compounds, 
inspired by the Central Limit Theorem, and devise 
a novel synthetic accessibility metric assessing the 
overall feasibility of making chemical compounds 
that has been fitted to a Gaussian distribution. Our 
approach utilizes a Gaussian mixture model (GMM) 
and Autoencoder, which rank synthetic complexity 
for natural products. This model can inform total 
synthesis of natural products, process chemistry 
in pharmaceutical contexts, materials science, and 
chemical engineering. Based on our findings, we 
conclude that the Autoencoder model is better suited 
to model the true probability distribution of synthetic 
complexity for natural products.

INTRODUCTION
While many motivations exist for the usage of machine 

learning in the process of molecular synthesis, the most 
prominent reason is often to conserve and optimize available 
resources. The development of small molecule drugs from 
discovery, preclinical research, clinical trials, and finally FDA 
approval can take up to 15 years and between $600 million 
to $1.4 billion (1). However, more recent approaches using 
machine learning have accelerated the potential for drug 
discovery. These approaches use virtual screening and 
parameterization, provide robust methods of augmentation 
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the same complexity score or fragment search algorithm for 
larger natural products that may not have the same available 
fragments. As such, our work seeks to address this issue by 
developing a metric capable of accounting for variations in 
the total number of atoms – ranging from small molecules to 
larger molecules with multiple conformers – therefore yielding 
results that are better optimized and targeted towards both 
synthetic and natural product molecules. 

In this work, we propose a novel synthetic accessibility 
metric that encompasses reported total cumulative reaction 
time, number of steps, extremities of temperature, and the 
yield of each step for a synthetic pathway. After extracting this 
data, we then used these parameters as the input features 
for machine learning algorithms that were trained to deliver 
a synthetic complexity score for a molecular compound. We 
trained two separate models, a GMM and an Autoencoder, 
and evaluated the performance of both models. Based on our 
findings, we conclude that the Autoencoder model is better 
suited to model the true probability distribution of synthetic 
complexity for natural products.

 
RESULTS 
	 In order to generate our SAScores, we first identified 
specific factors regarding both the required environmental 
conditions of the total synthesis and qualities of the synthesis 
itself. We inputted this information into both the Autoencoder 
and GMM models. We then analyzed the outputs for predictive 
accuracy.

Factors
The time and number of steps in the synthetic route of 

a complex molecule differ greatly from a relatively simple 
molecule. In most instances, a reaction with a greater 
number of steps tends to take more time than one with fewer 
and can indicate a more complex molecule; for example, 
synthesizing a more complex molecule can involve adding 
more functional groups and moieties to obtain the product, 
and thus more steps. These two factors, while significant, 
cannot encompass the entire intrinsic complexity of the 
compounds. Therefore, we examined two additional 
attributes of synthesis: temperature, and total product yield. 
The model did not penalize temperatures in the range of 
0-100°C, as they are well within the range of water baths with 
conventional technology. We used a penalty that increases as 
a function of the absolute distance from the 0-100° C range, 
as temperature ranges in the extremes beyond 100°C and 
below 0°C are difficult to achieve with conventional technology 
available in the lab. Thus, we imposed a penalty that varies 
proportionally to the difference beyond each of the upper and 
lower bounds. We also extracted the yield from the synthetic 
routes of the entire library of molecules. As low reaction yields 
imply difficulty in scale-ups and loss of product in purification, 
necessitating more product to be synthesized in each prior 
step to continue the synthesis, low reaction yields also lead 
to longer reaction time and a cumulative number of steps that 
are not necessarily reported on the synthesis itself. Hence, 
high yields have lower penalty while low yields point towards 
more complex compounds. 

Justification of Gaussian Distribution Rationale 
Given that many situations in the real world can be 

modeled by a normal distribution, it becomes important for 

our data and therefore synthetic complexity to mimic the 
characteristics of naturally occurring distributions. This idea is 
an extension of the Central Limit Theorem: given that nature 
is mostly normally distributed, a large enough dataset should 
also exhibit a normally distributed synthetic complexity score 
(10). In this case, by using t-SNE for the synthetic complexity 
factors, we visualized the resulting nonlinear manifold in a 
single curve—analogous to the majority of the variation lying in 
one dimension—when utilizing an Autoencoder. Additionally, 
the homoscedasticity of the data revealed that the t-SNE 
curve was an appropriate fit, with data exhibiting very low 
variance from the prediction model curve. As such, we can 
be confident that the one-dimensional latent embedding of 
the data fully represents all the information contained in the 
data, and that it is normally distributed (Figure 1).

Comparison of GMMs and Autoencoders
We used the t-SNE plot to determine whether 

an Autoencoder would be a suitable model for the 
multidimensional data. When plotted, the t-SNE visualization 
revealed a smooth and clean curve, confirming that an 
Autoencoder could be trained to accurately represent the 
synthesis of each molecule in our dataset (Figure 2). 

Figure 1: Diagram of Generated Encodings. Histogram of 
generated encodings, displaying an approximately Gaussian 
distribution.

Figure 2: Graph of t-SNE Dimensionality Reduction. When 
plotted, the t-SNE dimensionality reduction of the five synthetic 
complexity factors discussed above produces a clean and nonlinear 
curve. Since the curve is smooth, we were able to use an Autoencoder 
to reduce the dimensionality of the data.
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The smooth curve observed in the t-SNE shows that the 
data is highly correlated across some nonlinear manifolds, 
motivating the use of the Autoencoder. We used an 
Autoencoder to compress the synthesis factors into a single 
dimension and verified that this latent representation of the 
factors was normally distributed. 

Our GMM model further built on the Autoencoder algorithm 
by incorporating reconstruction loss and the encodings into a 
neural network based GMM.

The GMM showed a skewness to the right whereas 
the Autoencoder model had a general symmetric normal 
distribution (Figures 3-4). To quantitatively compare the 
normality of both datasets, we used the Kolmogorov-Smirnov 
test for normality and analyzed the Fisher Kurtosis of the 
outputs of the Gaussian mixture model and the Autoencoder 
model (11). We also calculated the Jensen Shannon (JS) 
distance between the output of each model and a Gaussian 
distribution with the same mean and standard deviation 
(12). Because the JS distance for probability distributions 
is analogous to the Euclidean distance for points in space, 
analyzing the JS distance allows us to calculate how similar 
the outputs of both models are to a normal distribution. 
A lower JS Distance corresponds to a model closer to the 
normal distribution, and similarly, a lower Fisher Kurtosis 
corresponds to a model closer to the normal distribution. 
These two metrics are calculated based on the probability 
value generated by the GMM and the encodings from the 
encoder portion of the Autoencoder model. 

The Kolmogorov-Smirnov test for normality indicated that 
the GMM is non-normal but failed to reject the null hypothesis 
for the Autoencoder model with a significance level of 
0.001. This was empirically verified as the GMM was visibly 
asymmetrical and thus non-normal whereas the Autoencoder 
appears symmetrical.

To further analyze the distributions, we analyzed the JS 

Distance and Kurtosis to generate numerical comparisons 
between the two approaches. We found that the GMM has 
a higher kurtosis (33.2293 for the GMM and 2.5491 for the 
Autoencoder) and is farther from the normal distribution 
than the Autoencoder, with a JS Distance of 0.7663 versus 
0.4866 respectively. This numerically verifies the fact that the 
Autoencoder outputted SA scores that were more normally 
distributed than the GMM.

Regression Model
To create a model that could predict synthetic complexity 

in the absence of previous data about a compound’s 
synthetic pathway, we fitted the generated encodings from 
our Autoencoder, along with the chemical descriptors and 
SMILES of each molecule, to a regression model. This 
enabled us to create a model which can predict synthetic 
complexity given only basic chemical information about a 
compound. For this, we attempted two approaches. 

Based on the SMILES encodings for each chemical 
compound in SynArchive, we used the molecular descriptor 
library Mordred to generate molecular descriptors for each 
molecule. We subsequently trained the regression model to 
fit the molecular descriptors from Mordred to the synthetic 
accessibility we computed from the Autoencoder. This 
ensured that the regression model can predict synthetic 
accessibility scores for future synthetic and natural product 
structures.

Alternatively, we used a one-hot encoding algorithm 
to generate SMILES embeddings for each molecule. This 
approach greatly reduced the validation loss and produced 
a wider range of synthetic accessibility score outputs. We 
employed various dropout layers to prevent overfitting. 
However, we noticed persistent problems with still relatively 
high validation losses and difficulty of the model generalizing 
to the SMILES embeddings. 

Figure 3: Five Groups of Encodings. The distributions for each of the five subsets of encodings generally follow a Gaussian curve. 

Figure 4: Evaluation of the GMM. The skewness of the GMM data distribution is reflected in the distributions of five randomly selected 
subsets of the same generated values. 
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Assessing Predictive Accuracy
The distribution of data for each factor individually was 

generally similar; most of the distributions were generally 
unimodal and skewed right, excluding maximum temperature, 
which contained some outliers (Figure 5). After putting this data 
through an Autoencoder, we observed that the distribution of 
our generated encodings was roughly symmetric and formed 
a Gaussian curve (Figure 1). This distribution had a mean of 
approximately 2.059 and a standard deviation of 0.311.

To further prove that the synthetic pathway data was 
indeed Gaussian, we divided the dataset from SynArchive 
into five randomly generated groups. We put each group 
into the Autoencoder and then generated the histograms for 
each dataset shown below. The histograms for each group 
conformed to the definition of the Normal Distribution with any 
combination of datasets (Figure 3).

For the GMM, we found that the distribution generated is 
slightly skewed to the right (Figure 5). We ran our evaluation 
strategy on this model as well, and the skewness of the GMM’s 
outputs were apparent when split into random subgroups 
(Figure 4). This qualitatively supports the numerical analysis 
of the two models.

DISCUSSION
The wide variations in the amount of structural 

information that can be obtained from various parameters 
in cheminformatics make the development of a synthetic 
complexity score highly controversial. For example, certain 
molecular structures can be more complex based on different 
parameters such as cyclic structures or heteroatoms, or 
even fragmentation of molecular structure and need to 
evaluate combinatorial groups of other descriptors. With 
scale-up for mass production remaining a primary concern 
for a pharmaceutical industry that handles a wide variety 
of molecules, our synthetic complexity score should be 
precise and widely applicable given that organic compounds 
in any given pharmaceutical pipeline can range from small 
molecule synthetic drugs to natural products and close 
derivatives. Therefore, we put forth a novel unified synthetic 
accessibility score that considers both structural- and 
reaction-related factors to handle the versatility demanded by 
the pharmaceutical industry. 

Because we do not have any labels for this task, we 
look to a heuristic interpretation of the scores outputted by 
both models. We tasked synthetic chemists to interpret the 
outputted scores and determine what a bigger or smaller score 
means in context of the situation for both the Autoencoder and 
the GMM. The SAScores from our Autoencoder, when scaled 

from 0-10 (1 being “easy” to make and 10 a “high difficulty 
synthesis”), are roughly accurate in predicting a molecule’s 
synthetic accessibility score. While there is some variability 
at the lower extremes, a higher score from the Autoencoder 
corresponds to an easier molecule to synthesize, whereas 
a lower value represents harder molecules. For example, 
Penitrem D was given a scaled score of 0, and has over 56 
steps, a total estimated time of about 587 hours, and with 
a yield of only 0.17%, which was categorized by a synthetic 
chemist within a category of upper-level difficulty (Table 1). 
Molecules that were scored high, and are therefore simpler, 
were accurate. For example, triquinacene has a low number 
of steps and requires relatively simple reagents in our third 
collected synthetic route. Given that this molecule had a 
scaled score of 9.9, the predicted score matches its actual 
synthetic accessibility. On the other hand, the Autoencoder 
SAScores are not entirely accurate for certain molecules that 
have scores less than five. For example, Adamantane, which 
has less than 10 steps, total time of less than 24 hours in 
the simplest synthesis, and two reported syntheses yielding 
upwards of 10% according to data collected from Synarchive, 
has a scaled SAScore of 0.016 (Table 1) but is a molecule that 
would likely be rated as relatively simple and straightforward 
to make. 

Another important finding from our generated SAScores 
is that the GMM scores have a skewed distribution, as all 
but five of the molecules had a score under 5, with most of 
the scores concentrated between 0 and 1. As a result, it is 
not possible to compare the GMM scores directly with the 
Autoencoder scores. However, it is possible to compare the 
GMM scores of the molecules to each other in a trimmed 

Table 1: Molecules within the dataset that the Autoencoder 
and GMM assigned synthetic accessibility scores for. The table 
contains information for five molecules and each of their synthetic 
route’s number of steps, maximum and minimum temperatures, 
total time, and yield, as well as raw unscaled rankings of the 
machine learning models for synthetic accessibility and a chemist’s 
approximate ranking.

Figure 5: Distributions of Synthetic Complexity Factors. The distributions for each synthetic complexity factor are generally unimodal and 
skewed to the right. This means that a trivial linear combination of the data will not yield a gaussian distribution, and the task requires a more 
complex model. Since a measurable metric should be normally distributed, the GMM is less suitable for our metric.
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dataset that excludes seven outlier molecules ranked above 
4, as their scores were disproportionately higher above the 
other molecules’ max score of 3.1. In addition, a noticeable 
finding is that the Autoencoder and GMM had similar rankings 
for the molecules in the dataset, i.e., molecules that one model 
ranked as higher difficulty also tended to be higher ranked by 
the other model. For example, Penitrem D is given a scaled 
score of 2.25, which is on the upper score end of the trimmed 
datasets, and thus the Autoencoder and GMM both agreed 
with each other in terms of synthetic accessibility scoring. 
Another molecule of high synthetic difficulty is Taxol, with 
61 total steps, 5% yield, and upwards of 20,000 minutes of 
synthetic time (Table 1). This molecule had an Autoencoder 
score of 0 as well, and a GMM score of 2.24, showing that 
both models demonstrated consistency when ranking high 
difficulty molecules. 

The GMM also appeared to be accurate for molecules 
of easier synthetic accessibility, such as for (4,5) Coronane. 
The synthesis of this molecule has only five steps, relatively 
mild temperature extremes, and an overall yield of 11% 
(Table 1). Thus, chemists would likely rank it at around 
3, which corresponds with the scaled GMM score of 0.36. 
The Autoencoder score for this molecule is 7.6, and so also 
matches the synthetic chemist and GMM rankings. 

Ultimately, in the field of molecular generation, complexity 
is vital in selecting synthetically viable compounds. No 
matter how novel and promising the compound is, synthetic 
chemists must always consider the synthetic accessibility of 
the molecule. Therefore, a quantitative metric for synthetic 
accessibility must be incorporated as part of any machine 
learning for drug discovery efforts involving Generative 
Adversarial Network (GAN), Variational Autoencoder (VAE), 
Reinforcement Learning (RL), or any other methods. 

By comparing two separate approaches, the Autoencoder 
and the GMM, to obtain a synthetic complexity score, we 
showed that an Autoencoder is more effective. We expect 
our algorithm to drastically reduce the computation time and 
processing power needed to calculate the complexity of a 
drug molecule without relying on any arbitrary assignments or 
subjective weighting assumptions. Our model is objective and 
generates weights for a molecule’s complexity solely based 
on intrinsic factors. This can be generalized to the synthesis 
of many compounds by enabling rapid high-throughput virtual 
screening of drug molecules that can greatly shorten the 
whiteboard to clinical timeline. 

The use of the Autoencoder framework in both models 
in compressing the data is possible because of the 
Autoencoder ’s ability to compress information for a nonlinear 
dimensionality reduction. If the activation function used 
within the Autoencoder is linear within each layer, the latent 
variables present at the bottleneck (the smallest layer in the 
network) directly correspond to the principal components 
from Principal Component Analysis (PCA). When nonlinear 
activation functions are used, such as in this case the Rectified 
Linear Unit (ReLU), Autoencoders work as a nonlinear 
dimensionality reduction algorithm, thus being able to capture 
the smooth curve that is displayed in the t-SNE, like how a 
linear Autoencoder would match the PCA. The main benefit 
added with the Autoencoder is that while the t-SNE must be 
recalculated every time there is a new datapoint added to the 
dataset, the Autoencoder generalizes well and can be applied 
to new datapoints without the need for retraining.

A central limitation to our current model is the lack of 
sufficient data to train the GMM. We believe that this limitation 
can be addressed in future work by compiling a larger dataset 
of small molecule compounds. A more diverse dataset of 
synthetic molecules, natural products, and natural product-
inspired structures can further improve the classification of 
synthetic accessibility among a larger manifold of molecules. 
Our synthetic accessibility score can also be combined and 
stacked via ensemble machine learning with other metrics for 
synthetic accessibility to provide a more comprehensive and 
holistic assessment of the synthetic complexity of chemical 
entities. Nevertheless, the synthetic accessibility score we 
put forth in this paper is a novel metric that can help determine 
the viability of not just synthetic and natural product drugs, but 
also the feasibility of synthesizing any chemical substance, 
including antibiotics, chemical cells, and chemical electronics. 

In future work, we will need to address the issue of 
choosing the optimal molecular representation in order to 
capture maximal information about synthetic accessibility. A 
larger SMILES embedding model with denser and dropout 
layers is a promising solution. In future work, we want to 
explore how different graph-based representations of the 
molecular structures might enhance the SAScore. This is 
because certain molecular traits such as those involving a 
molecule’s stereochemistry can only be calculated from 
three-dimensional spatial representations. Finally, to test the 
accuracy of the SAscores, synthetic chemists can physically 
synthesize the molecules detailed in this paper in the lab to 
further validate the complexity of the molecules presented.

MATERIALS AND METHODS
Dataset

We used SynArchive as the source of our chemical 
synthetic data (13). The database contains 194 unique natural 
products and their previously reported synthetic routes. Each 
synthetic route contains the number of total steps, the number 
of parts in the synthesis, and each of the steps in the synthesis, 
with the reactants, reagents, solvent, temperature, and the 
named reaction that is occurring, if any or all are applicable. 
We extracted information regarding the total reaction steps, 
cumulative reaction time, the temperature extremities, and 
the composite yield of the entire synthetic route for each 
molecule from the dataset, making use of Optical Structure 
Recognition (OSRA) to convert from the molecular image on 
the website to the molecular graph (14). 

SMILES Encodings 
We represented the synthetic pathway of a molecule, 

primarily reactants, products, and intermediary compounds, 
using the Simplified Molecular Input Line Entry System, 
or SMILES, a notation that captures a chemical's three-
dimensional structure into a string of symbols that can be 
processed by computer software (15). While this omits some 
structural information about the individual molecules in the 
route, such as the ability to explicitly define stereochemistry 
for individual stereocenters, we found that incorporating 
the structural information is memory intensive and makes 
the underlying data compression problem unwieldy and the 
results difficult to interpret.

T-SNE Visualization
Our approach for building a synthetic complexity model 
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broke down chemical synthesis pathways into four influential 
factors. Using Python, we parsed the data into the major 
synthetic accessibility (SA) factors: time, minimum and 
maximum temperature, the number of steps, and the total 
yield of each synthetic pathway, and inputted them into the 

t-SNE algorithm (Figure 6). T-distributed Stochastic Neighbor 
Embedding, or t-SNE, is a nonlinear dimensionality reduction 
algorithm that has been shown to preserve both the local and 
global structure of higher dimensional data into two or three 
dimensions, allowing for visualization (16).

To do so, the conditional probabilities were calculated for 
the Euclidean distances between the complexity features, 
which represent the similarity of datapoint xj to datapoint xi 
using the conditional probability pj | i that xi would pick xj as its 
neighbor. A t-distribution centered at xi was then sampled to 
pick the neighbors.

A similar function q j | i was calculated for the low dimensional 
counterparts of xi and xj, yi and yj.

For the low dimensional representations of xi and xj 
to reflect the structure of the high dimensional data, the 
conditional probabilities pj | i and qj | i must be close to equal. A 
measure of the difference between the q and p distributions 
is the Kullback-Leibler divergence, an information-based 
measure of disparity among probability distributions. The cost 
function thus consisted of the sum of the Kullback-Leibler 
divergences over all data points.

This cost function was minimized using gradient descent, an 
iterative optimization algorithm based on first order gradients 
used to find the local minimum or maximum of a function.

Gaussian Mixture Model
We found that using the manually selected synthetic factors 

omits a significant amount of information about the synthetic 
pathways. Due to the curse of dimensionality (17), it was 
intractable to directly use all the data available on SynArchive 
since the dataset size was extremely limited. Therefore, we 
utilized a Deep Autoencoding Gaussian Mixture Model (GMM) 
to map the entire synthetic pathway of a molecule into a single 
Gaussian energy function. The GMM allowed us to train a 
model using our synthetic pathway data, and we used this as 
a second method to predict synthetic complexity to compare 
against our regression model. We followed the approximate 
model architecture developed by Zong et al., which uses latent 
embeddings and reconstruction error to learn a multimodal 
Gaussian distribution in an end-to-end manner (18). First, we 
trained a separate Autoencoder to generate encodings for 
the 41 unique characters in the model, with each character 
representing either an atom of the molecule or an atomic 
bond. This Autoencoder captures meaning about the symbol 
itself as it relates to the total syntheses of all the molecules. 
Next, we used Gated Recurrent Unit (GRU) cells to create the 
Autoencoder to encode the sequential data (19). This GRU- 
Autoencoder (GRU-AE) was then used to “score” a window 
of sequential data according to how close it was to normality. 

Figure 6: Schema of Synthetic Complexity Pipeline. Schema 
of synthetic accessibility computation with the Autoencoder. The 
time, steps, maximum temperature, and minimum temperature are 
extracted for each molecule and stored in a dictionary. The four 
factors are then compressed to one dimension after undergoing 
the t-SNE dimensionality reduction step. The 1D output becomes 
the label for each molecule and the labeled data is used to train the 
Autoencoder.
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We then trained the model to generate a unimodal Gaussian 
energy function. Finally, we plotted the energy function 
outputted by the model and verified that it is Gaussian given 
the bell curve shape of its distribution. 

Autoencoder Model
After obtaining validation from the t-SNE step mentioned 

above that the data in fact fit a Gaussian curve, we 
utilized an Autoencoder to flatten the input variables into a 
univariate output. Autoencoders are an unsupervised deep 
learning model which compresses data into a latent vector 
in a lower-dimensional subspace by mapping the higher 
dimensional points onto a nonlinear manifold (20). We used 
the Autoencoder to compress the five factors: total time of 
the synthesis, number of steps, the maximum temperature in 
the synthesis, the minimum temperature of the synthesis, and 
total yield into a single one-dimensional encoding output: the 
synthetic accessibility score.

The Autoencoder architecture consists of encoder and 
decoder networks with a bottleneck layer. Layers 2, 3, and 
4 take the ReLU activation function and the last layer takes 
a sigmoid activation function. The input layer consists of 5 
nodes, one for each of the variables we considered. The 
Autoencoder first undergoes the encoding process and 
compresses the data to a 1-dimensional representation of 
the input. This 1D synthetic accessibility score encompasses 
all the information held within the chemical molecule. The 
model then transitions into the decoding process and tries to 
generate the five original variables from the input. 

In all experiments, we used a batch size of 327 and 
trained using the Adam optimizer with a mean squared error 
loss function. To ensure that the Autoencoder was properly 
encoding the dataset, we split the data into training and 
test data, using an 83 to 17 percent split, respectively, and 
monitored the validation loss to ensure that the model was 
not overfitting.

We trained the Autoencoder to minimize the reconstruction 
error given by equation 4.

This equation represents the mean squared error between 
the input data and the output of the Autoencoder model, 
represented by x and x’. We reported the best model after 
1000 epochs. The GMM and Autoencoder models were 
then compared to determine the best metric for synthetic 
accessibility.
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