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that such systems do not understand or effectively implement 
concepts (2).

The advantage of studying artificial neural networks, 
in contrast to the biological neural networks in the brain, 
is that these systems are mathematically formalized (i.e., 
made up of a collection of interacting neuron-like units) and 
thus can be implemented, simulated, and monitored on a 
computer. Artificial neural networks can consist of billions 
of neurons and can be structured into layers (2). Typically, 
there is an input layer, a variable number of hidden layers, 
and an output layer (3). These hidden layers perform typically 
non-linear calculations on the inputs and then yield output 
activity (3). Each neuron has an activation value and each 
connection from a given layer to the next layer has a weight 
parameter corresponding to the connection strength (3). 
These parameters determine how neurons contribute to the 
downstream connected neurons, and so on. For many artificial 
networks, the network learns in a process by which the error 
at the output layer is calculated and then back-tracked through 
the network to determine how to change parameters at each 
layer and unit, an algorithm called backpropagation (3, 4). 
Generally, a neural network is trained on an initial dataset and 
then given a test dataset on which it has not previously been 
trained in order to simulate a real-world problem requiring a 
general form of knowledge. The definition of the network’s 
performance is the ability to respond correctly to these test 
instances, an ability otherwise known as “generalization” (4). 

Toward addressing the limitations of artificial neural 
networks, one approach is to identify how actual brains, made 
up of biological neural networks, achieve cognitive abilities. 
By studying how the human brain achieves cognition, we can 
develop models for how neural networks might accomplish 
such abilities. We took this approach by developing artificial 
neural networks that model the conceptual ability of 
honeybees as a simple system. 

A recent experimental study of honeybees found that 
they can identify the above vs. below relationship in a set of 
familiar stimuli and generalize this knowledge to new stimuli 
(5). In the study, Avarguès-Weber et al. tested honeybees 
on an above vs. below concept task (5). In the first version 
of the task, honeybees were required to recognize whether 
a shape is above or below a horizontal black bar, and in 
the second version of the task, honeybees were required 
to recognize whether a shape is above or below another 
shape. In both versions, each honeybee was presented 
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SUMMARY
Modern artificial neural networks have been 
remarkably successful in various applications, 
from speech recognition to computer vision. 
However, it remains less clear whether they can 
implement abstract concepts, which are essential to 
generalization and understanding. To address this 
problem, we investigated  the above vs. below task, 
a simple concept-based task that honeybees can 
solve. We hypothesized that neural networks would 
successfully solve this task, and that performance 
would vary substantially between network 
architectures. Specifically, we predicted that the 
convolutional neural network (CNN), a prototypical 
architecture well known for its ability to classify 
objects accurately, would perform better than the 
single-layer and multi-layer perceptrons (SLP and 
MLP, respectively). In the first task (Experiment 1), a 
visual target was presented above or below a black 
bar; in the second (Experiment 2), a visual target 
was presented above or below a reference shape. 
We found that all networks achieved 100% testing 
accuracy on Experiment 1. In contrast, the networks’ 
accuracy differed substantially in Experiment 2. 
The SLP had only a 50% testing accuracy, and the 
CNN outperformed the MLP (98% vs. 81% accuracy, 
respectively). Further analysis of the connection 
weights and distances between shapes suggested 
that the MLP may not evaluate relative spatial 
relationships in Experiment 2. Instead, the network 
seemed to partition the image into upper and lower 
zones, which appears inconsistent with the concept 
of relative locations. These findings indicate different 
capacities of network architectures, offer insight into 
their mechanisms, and motivate work on how neural 
systems implement conceptual knowledge.

INTRODUCTION
The use of neural networks to implement and model 

intelligence appears promising but may be limited by the 
narrow scope of tasks known to be solvable by these systems 
(1). That is, when tested for generalization on data outside of 
the training distribution, these networks often fail or even are 
logically bound to fail (1). For example, an artificial system 
programmed or trained to play tic-tac-toe will not be able to 
transfer its knowledge and experience to another game, such 
as chess. Importantly, a possible reason for this limitation is 
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with two images in a y-maze (Figure 1). The honeybee 
then chose an image and followed the corresponding path 
in the maze. After many training trials, the bees performed 
a transfer test with the same tasks, but different shapes in 
the images. In the transfer tests, bees chose the correct 
image with 70% accuracy (5). This finding was important 
because it was an instance of conceptual learning in a small 
brain (only about 1 million neurons, compared to 86 billion 
neurons in the human brain) (6). In this respect, bees may 
be distinctive among invertebrates, which usually have less 
complex, centralized, and specialized nervous systems than 
vertebrates (7). Indeed, the fact that honeybees were able to 
solve this complex conceptual task challenges the view that a 
large brain is needed for abstract cognition (8). The bees not 
only needed to recognize the shapes on the images but also 
understand how their positions are related. This suggests 
that neural networks, which have a similar number of neurons 
to honeybees, could potentially be capable of learning and 
categorizing abstract concepts as well.

The authors of the above vs. below honeybee study 
claimed that conceptual ability was indicated by the bees’ 
performance (5). Our study expanded upon this work by 
determining whether it is possible to construct a neural 
network capable of performing the above vs. below task. As 
with the honeybee study, we sought to determine whether 
classic neural network architectures can effectively solve the 
above vs. below task and to understand the networks’ strategy 
for solving the task. We tested single-layer perceptrons (SLP), 
multi-layer perceptrons (MLP), and convolutional neural 
networks (CNN). MLPs have hidden layers, but SLPs do not. 
CNNs have several convolutional layers (containing filters) 
and pooling layers that scan for features at various locations 
in the image.

We hypothesized that the neural network architectures will 
differ significantly in testing accuracy in the above vs. below 
concept task. In particular, we predicted the CNN, which is 
designed to process visual data and recognize images, will 
perform the best out of all the networks. Our reasoning was 
that the convolutional and pooling layers of CNNs could 
plausibly help these networks identify spatial relations 

between objects (9). Thus, we predicted the known advantage 
of CNNs in image recognition will extend to this task of spatial 
relationship recognition. In the first task (Experiment 1), we 
displayed images of a visual target above or below a constant 
black bar; in the second (Experiment 2), we displayed images 
of a visual target above or below a reference shape. After 
training the neural networks, we found that the CNN had the 
highest performance with 100% testing accuracy and 98% 
testing accuracy on the two tasks respectively, consistent with 
this hypothesis. The MLP achieved 100% testing accuracy on 
the first task, but only 81% testing accuracy on the second. 
These findings revealed differences between neural network 
models and suggested further analysis of the networks’ 
mechanisms to clarify these differences.

RESULTS
As with the previously published experimental study 

about honeybees that tested their ability to learn and apply 
concepts, we performed two experiments to test the ability 
of neural networks to conceptualize above vs. below (5). 
Experiment 1 investigated the ability of neural networks to 
identify a target shape above or below a constant black bar, 
while Experiment 2 investigated the ability to identify a target 
shape above or below a reference shape (Figure 2). 60,000 
training images and 10,000 testing images displaying these 
relationships were randomly generated for both experiments. 
Each image with a target shape displaying the ‘above’ spatial 
relationship was paired with a corresponding image with the 
same target shape displaying the ‘below’ spatial relationship. 

Figure 1. Y-maze (decision maze) with a honeybee presented with 
two images. The left image demonstrates the ‘above’ relationship 
and the right image demonstrates the ‘below’ relationship. The 
honeybee then chooses an image and follows that path in the maze. 
From there, it is either rewarded with a sucrose (table sugar) solution 
or penalized with a quinine (bitter compound) solution.

Figure 2. Representative training and testing images for 
Experiment 1 and 2. 60,000 training images and 10,000 testing 
images were randomly generated for both experiments. Figures 2A–
2D are for Experiment 1. Reference is the black bar for all images in 
Experiment 1. A) Training dataset target (square) above reference. 
B) Training dataset target (square) below reference. C) Test dataset 
target (circle) above reference. D) Test dataset target (circle) below 
reference. Figures 2E–2H are for Experiment 2. Reference is the 
circle for all images in Experiment 2. E) Training dataset target 
(upside-down triangle) above reference. F) Training dataset target 
(upside-down triangle) below reference. G) Test dataset target 
(diamond) above reference. H) Test dataset target (diamond) below 
reference.
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We tested three network architectures: SLP, MLP, and CNN.  
Each network was run for 10 iterations of training and testing 
in both experiments. 

Experiment 1: All networks perform with full accuracy
In Experiment 1, the MLP, CNN, and SLP neural networks 

were all able to successfully solve the task with perfect testing 
accuracies of 100% (Figure 3). Since the SLP was able to 
solve the task, only a single linear transformation of the inputs 
was needed for separating the two choices of spatial relation 
(above vs. below). To understand how these networks solved 
the task, we visualized the connection weights (parameters 
representing the strength of connections between units) from 
input layer neurons (pixels) to single neurons within each 
network (Figure 4). Plots of connection weights in the MLP 
showed clustering of positive and negative weight in the 
upper vs. lower zones (Figure 4A). A similar pattern could 

be seen in the SLP with a more well-defined clustering of 
weights (Figure 4B).

Experiment 2: CNN outperforms MLP
In Experiment 2, the CNN outperformed the MLP, achieving 

approximately 16% higher testing performance (MLP: 81.4%, 
CNN: 98.3%) (Figure 3). Importantly, the SLP had only 
random chance performance (50.3%), further suggesting a 
difference between task versions. The performances across 
instances of each neural network architecture differed 
significantly (Kruskal-Wallis test, p < 0.0001), and the testing 
accuracies of the SLP vs. MLP (p = 0.008), SLP vs. CNN 
(p = 0.0000004), and MLP vs. CNN (p = 0.009) were all 
significantly different (post-hoc Dunn’s test, p < 0.01). 

To gain insight into how the networks performed the 
task, we analyzed the connection weights of the MLP, which 
performed both task versions successfully. Similar to the first 
task version, the connection weights indicated that at least 
several of the hidden layer neurons with strong output weights 
divided the image into above vs. below zones (Figure 5). To 
investigate further, we analyzed the absolute y-distances 
(vertical differences in pixels) between the target and 
reference shapes of incorrectly identified images vs. correctly 
identified images. A histogram of the distances showed that 
correctly identified images had generally larger y-distances 
than incorrectly identified images (Figure 6). 

DISCUSSION
We investigated the capacity of neural networks to 

perform simple conceptual tasks, focusing on the above 
vs. below relationship, a concept that can be understood by 
honeybees. Our results demonstrated that CNNs and MLPs 
could correctly identify the spatial relationship of above vs. 
below by solving the tasks outlined in Experiment 1 and 2. 
Interestingly, in Experiment 2, the CNN  performed with a 
considerably higher accuracy than the MLP. The SLP was 
also able to fully solve Experiment 1 but performed at random 
chance levels in Experiment 2.

 This study suggested two insights. First, the ability to 
tell whether a visual object is located above vs. below a 
constant bar can be simple, as demonstrated by the SLP 
model achieving a perfect performance in Experiment 1. This 
indicated that the challenge of simplistic image classification 
in a biological setting may not be in the analysis of the image 
array. Instead, the challenge may be for a subject (e.g., 
a honeybee) to approach and attend to the relevant visual 
objects (in a world full of other stimuli). Once a subject does 
this, solving the spatial concept can become much simpler.

Second, important architectural differences between 
models were indicated in the more difficult version of the task 
(Experiment 2), in which CNNs outperformed MLPs. Additional 
analyses performed on the MLP suggested that the network at 
least partially relied on the absolute positions of visual stimuli 
(both the reference and target shapes) to solve the task. In 
contrast to MLPs, CNNs and deeper networks in general 

Figure 4. Examples of neural network connections in 
Experiment 1. The connection weights are shown for each pixel 
in the input images. A) Map of connection weights from the input 
(pixels) to one hidden layer neuron for the multi-layer perceptrons. B) 
Map of the connection weights from the input (pixels) to one output 
neuron for the single-layer perceptrons.

Figure 3. Testing accuracies for different neural networks in 
Experiment 1 and 2 (n=10). The mean testing accuracy over 10 
trials for each neural network is presented. Error bars present the 
standard error. SLP = single-layer perceptrons, MLP = multi-layer 
perceptrons, CNN = convolutional neural network.
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are known to be able to distinguish between visual objects 
irrespective of position in the input image (9). This is made 
possible by the specialized architecture of the CNNs (e.g., 
convolution and pooling layers) and additional layers in these 
networks. These same components of CNNs may plausibly 
be used to identify spatial relationships between objects. This 
possibility is consistent with the present findings, though the 
task tested here is not equivalent to object recognition tasks 
typically tested on CNNs.

Perhaps the most important caveat in these experiments 
is that the neural networks might not fully need to determine 
relative position (the concept tested by the task), and 

instead rely on absolute positions. This was clearly the 
case in Experiment 1 since the simple SLP, which has no 
hidden layers, was able to achieve a high accuracy. Plots 
of connection weights further revealed that the SLP used a 
simple strategy in which images were analyzed by upper vs. 
lower zones (Figure 4B). More generally, neural networks can 
overfit training data, leading to diminished performance on 
test data; thus, simple alternative interpretations of networks’ 
success on a task should be considered.

Future investigation of these networks can clarify 
their underlying mechanisms and thus their differences in 
performance. Furthermore, these results suggest that other 
simple conceptual tasks can be meticulously studied using 
artificial networks. Better understanding of these systems can 
potentially shed light on how actual brains work. Modeling 
and understanding the brain may guide the future of artificial 
neural networks, ultimately generating opportunities for 
further insights.

MATERIALS AND METHODS
Three neural network architectures were trained in 

these experiments: SLP, MLP, and CNN. The SLP model 
contained a single linear transformation with no hidden 
layers. The MLP model contained a single hidden layer with 
256 neurons with a Rectified Linear Unit (ReLU) activation 
function. Both models had an output layer of two neurons 
with a Softmax activation function. The SLP and MLP had 
1,570 and 100,738 parameters, respectively. As such, the 
MLP model represented a significant increase in complexity 
over the SLP. The CNN model contained three convolutional 
layers, each of which used a 3x3 kernel or filter, and applied 
a ReLU activation function. Between each pair of convolution 
layers, a simple 2x2 max pooling layer was used to reduce 
size. This was flattened and fed to a dense layer with 256 
neurons and a ReLU activation function. Finally, the output 
layer used Softmax activation on two neuron outputs, as in 

Figure 6. Absolute y-distances (vertical differences in pixels) 
between the centers of target and reference shapes for the 
multi-layer perceptrons in Experiment 2. Note that y-distances 
are larger for correctly identified images compared to incorrectly 
identified images. 

Figure 5. Collection of 256 (28x28 grid) heatmaps of multi-layer 
perceptrons connection weights from input layer neurons 
(pixels) to a single hidden layer neuron. Heatmaps are sorted in 
increasing order (by row, then by column) by the weight from the 
hidden layer neuron to the output neuron. The heatmaps near the 
top left represent the smallest (most negative) weights, and the 
heatmaps near the bottom right represent the largest (most positive) 
weights. Each individual heatmap represents the connection weights 
from the input layer neurons (pixels) to a single hidden layer neuron. 
A) Heatmaps from Experiment 1. B) Heatmaps from Experiment 2.
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the other models. Effectively, the CNN model utilized a small 
convolutional stack to process and reduced the input before 
feeding it into a model form equivalent to the MLP. However, 
because the max pooling reduced the size of the tensor 
representation, the final CNN model had 169,625 parameters. 
Each model was trained over 10 epochs. In both experiments, 
the neural networks were programmed in Python using the 
PyCharm Integrated Development Environment (IDE). The 
open-source software library TensorFlow with the Keras API 
was used to build, train, and test the neural networks (10, 11).

Each training and testing image consisted of a 28x28 pixel 
grid with a grayscale color range. The reference placement 
on the image was randomized as well as the target’s location. 
Each image with a given target above the reference was 
paired with a corresponding image with the same target below 
the reference (Figure 2). The images were randomly shuffled 
during training to ensure the model focused on generalizable 
learning instead of learning tailored to specific images. Each 
model for both experiments included training on 4–5 target 
shapes and testing on 1 novel target shape. The experiment 
utilized a training set of 60,000 images and a testing set of 
10,000 images. Each model was trained and tested 10 times 
on randomized data.

In Experiment 1, each image consisted of a target shape 
placed above or below a reference black bar. The three neural 
networks were trained to identify the correct relation based 
on two types of images, one with ‘target above bar’ spatial 
relation and the other with ‘target below bar’ spatial relation 
(Figure 2A–2D). The target was randomly selected out of 6 
different shapes (square, diamond, 0o normal triangle, 180o 
upside-down triangle, rectangle, circle) with 30-36 pixels in 
area, whereas the reference was kept constant as a black bar.

In Experiment 2, each image consisted of a target shape 
placed above or below a constant reference shape. Like in 
Experiment 1, the three networks were trained to identify 
the correct relation based on two images, one with ‘target 
above reference’ spatial relation and the other with ‘target 
below reference’ spatial relation (Figure 2E–2H). The target 
varied among 5 different shapes (square, diamond, 0o normal 
triangle, 180o upside-down triangle, rectangle) with 30-36 
pixels in area, whereas the reference’s constant shape was 
a circle. 

We applied a Kruskal-Wallis test on Experiment 2 with 
a significance level (α) of 0.01 to determine if there was a 
significant difference in the testing accuracies of the different 
neural networks (df = 2, H = 25.8, η2 = 0.88). Then, we ran 
a post-hoc Dunn’s test with a Bonferroni correction and 
significance level (α) of .01 to account for multiple comparisons 
between the SLP vs. MLP, SLP vs. CNN, and MLP vs. CNN 
pairs. To perform these statistical tests, we used the open-
source scientific computation library SciPy (12).

The code used in this study can be found at: https://github.
com/rzirvi1665/Neural-Networks-Above-Vs-Below.git
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