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for stage 4 (5). The differences in the treatment costs and 
survival rates at various stages emphasize the importance of 
early diagnosis. 
	 Although different methods exist to detect skin cancers, 
each of them comes with its own flaws. Previous research 
on diagnostic accuracy for skin cancers has been done using 
histopathological methods (microscopic examination of tis-
sue) to diagnose 128 pathologies that were potential cases of 
skin cancer (6). The diagnosis accuracy for 2 dermatologists 
(medical practitioners qualified to diagnose and treat skin dis-
orders) with at least 10 years of experience in dermatology was 
80%, while the diagnostic accuracy rates for 2 senior registrars 
(clinical consultants) each with 3 to 5 years of experience and 
6 junior registrars each with 1 to 2 years of experience were 
62% and 56%, respectively (6). In this study, variation in visual 
appearance was a major factor in the diagnosis accuracy of 
melanoma specifically, with junior registrars recognizing thin 
and intermediate thickness melanoma pathologies with a third 
of the accuracy of the dermatologists and senior registrars (6). 
A German study found that 30% of melanoma cases were in-
correctly diagnosed by dermatologists at the first medical visit, 
indicating a 70% diagnosis accuracy for melanoma (7). Spe-
cifically, the similar appearance between melanoma and other 
conditions such as chronic wounds, warts, and fungal infec-
tions, lead to initial misdiagnosis of melanoma and a median 
delay of melanoma treatment of 9 months (7).
	 Both aforementioned studies used visual inspection along 
with a conventional method called excisional biopsy to detect 
melanoma (whether accurately or not) (6, 7). Additionally, bi-
opsies can be destructive to the skin as the suspected area is 
removed for microscopic inspection. To perform an excisional 
biopsy, a cut is made through the skin to remove a suspected 
area for inspection under a microscope for the presence of 
a disease, using indicators such as tissue integrity and cell 
maturity. In fact, a small amount of healthy tissue around the 
abnormal area may also be removed, resulting in the need 
for stitches and additional expenses (8). Early identification of 
skin cancer is even more crucial for people with low income, 
who are unable to afford the expensive treatments needed 
for later stages of skin cancer. In addition, they may be more 
susceptible to such diseases due to underlying conditions like 
malnutrition (9). Another issue with the current biopsy method 
for detecting and identifying skin cancer is the length of time 
it takes until the patient can access test results. It generally 
takes about 2 to 3 weeks to get the results of a biopsy, which 
also means that potential treatment is delayed, resulting in a 
worse prognosis (10). Since biopsies to detect skin cancer are 
costly, inaccessible, time-consuming, and inaccurate, a soft-
ware and data-based solution is a potential to remedy these 
inefficiencies. 
	 Thus, the goal of our study was to build a machine learn-
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SUMMARY
Skin cancer is the most common type of cancer and 
includes diagnosis procedures that are costly, time-
consuming, inaccurate, and inaccessible to many. The 
goal of this project was to determine the feasibility 
of a machine learning algorithm to identify skin 
cancers and compare the results to the conventional 
procedures of external visual inspection and biopsies. 
We used the HAM10000 dataset, a diverse collection 
of multisource clinical images of cutaneous skin 
pathologies (based on external appearance) which 
contained 11,034 unique image files of skin cancers 
and lesions at the time of this project. We tested and 
trained a machine learning algorithm with the dataset, 
and analyzed the accuracy, sensitivity, and runtime 
of the algorithm for seven skin pathologies, which 
were either skin cancers or pathologies that could 
potentially develop into skin cancer. The model was 
created with AutoKeras to automatically search for 
and apply the best algorithm. The average accuracy of 
the model (for each skin pathology type) was 84.05%, 
which exceeds the accuracy of histopathological 
diagnoses done by experienced dermatologists by 
4.05%. For melanoma, the most fatal form of skin 
cancer, the model had a 70.63% diagnosis accuracy. 
Furthermore, the average runtime of the model, 
4.9775 seconds, provides a significant advantage 
when compared to the typical minimum time needed 
to wait for biopsy results. The increased performance 
of a machine learning model when compared to 
conventional methods for identifying skin cancer 
results makes it a feasible alternative.

INTRODUCTION
	 Skin cancer, the most common type of cancer, is a life-
threatening disease. 20% of Americans will develop skin 
cancer by the age of 70, leading to over 17,500 annual deaths 
(1, 2). Unfortunately, the diagnosis of skin cancer is not 
easy. Early-stage diagnosis is crucial, as diagnosis at later 
stages comes with decreased survival rates and increased 
costs. Specifically, in the United States, it costs a patient 
approximately $1,732 to treat stage 1 skin cancer, while it 
costs over $56,059 (32 times more) to treat stage 4 cancer (3). 
These costs, especially at a later stage, can be even greater 
than the median salary in the US - $54,132 as of the second 
quarter of 2022 (4). In fact, it was found that almost 100% will 
survive their skin cancer for at least 5 years after diagnosis 
if it is at stage 1 (5). However, this survival rate is 80% for 
stage 2, 70% for stage 3, and rapidly drops down to only 30% 
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ing model that outperformed conventional medical methods in 
detecting skin pathologies that can lead to skin cancers and 
other medical complications. A convolutional neural network 
(CNN) was selected due to its superior ability for image clas-
sifications, in terms of its relatively high accuracy when com-
pared with other machine learning models such as a multilayer 
perceptron (MLP) algorithm (11). This is because MLPs take 
vector inputs while CNNs take tensor inputs, meaning that 
CNNs can generally detect spatial relations between pixels of 
images better than MLPs (12). For images of skin cancers and 
lesions, the spatial relations of pixels are key as certain types 
of skin lesions appear similar in shape and color but have mi-
nor differences that only CNNs would identify and consider 
to correctly diagnose the disease. Another commonly used 
machine learning model is a recurrent neural network (RNN), 
which takes in vector inputs – like MLPs but unlike CNNs (13). 
In addition to the increased efficiency in accessing data in-
puts (as previously mentioned), CNNs are inherently faster 
than RNNs, since the data accessing, augmentation, and pro-
cessing in CNNs can occur simultaneously, while RNNs need 
to process image inputs sequentially (since the subsequent 
steps depend on previous ones) (14). Unlike RNNs, in CNNs 
its built-in convolutional layer reduces the high dimensionality 
of images since the same filter is applied to multiple locations 
of the image at the same time, decreasing the average run-
time per image (15). 
	 We hypothesized that the machine learning model would 
have a total accuracy of 80%, which matches the 80% accu-
racy rate by experienced dermatologists, and that the model 
would relay the detected skin cancer result in a matter of sec-
onds as opposed to the 2 to 3 weeks needed for biopsy results 
(5, 10). Our model analyzed images which included one of 7 
skin pathologies and cancers: actinic keratosis, basal cell car-
cinoma, benign keratosis, dermatofibroma, melanoma, mela-
nocytic nevi, and vascular lesions. After creating and running 
the CNN algorithm, the final average accuracy of the model 
across the 7 types of skin pathologies tested was 84.05%, and 
the average run time for each image was 4.9775 seconds. 
The high predicted accuracy of the model stems from prin-
ciples of machine learning and data analysis; with the vast 
amount of data a machine learning model uses, patterns in 
the results can be easily detected while smaller errors can be 
disregarded. On the other hand, even the most experienced 
doctors can only diagnose based on their observation, leading 
to the possibility of random error and misclassification. Large 
datasets, such as those used in machine learning, contain far 
more images of skin pathologies and cancers than a typical 
dermatologist has seen. The hypothesis for the quick runtime 
was made because computers can be fed enormous amounts 
of data and quickly analyze them for patterns based on pre-
written instructions. Computers are generally better suited for 
executing step-by-step machine learning algorithms (specifi-
cally CNN models), as opposed to creative or conditionally 
complicated tasks. Studies by the IEEE and others confirm 
that computers can use CNN models to analyze images with 
several convolutional layers, using algorithms like that in this 
study, within seconds (16).

RESULTS
	 Using the HAM10000 database from Kaggle.com (17, 18), 
the model was trained with training data (90% of all images) 
and tested with testing data (10%) of all images. This means 

that the test-train split was 10-90. Trained data is fed one at 
a time so that the model gets an increasingly better idea of 
what a certain pathology typically looks like, as it sees both the 
image and the actual (predetermined in the dataset) pathology 
type. Using the training data images, which all featured one of 
the previously mentioned pathologies, the model was run to 
test previously unseen images and gather data. This ensured 
that data was not being reused between testing and training 
phases. Before testing and training of the model however, data 
augmentation and sampling were used to maintain a balance 
in the number of images per pathology. Data sampling was 
done so that the model would not be overfit with excessive 
data from any certain pathology, and data augmentation was 
performed so that the model would not have insufficient data 
to make accurate predictions,
	 After running 50 iterations (epochs) of the machine learning 
model on the training dataset, the average accuracy for the 7 
types of skin pathology was found to be 84.05%. That is, out 
of all the approximately 10,000 images in the dataset analyzed 
by the model, 84.05% of them featured skin pathologies that 
the model correctly identified and classified as one of the 7 
possible pathologies found in the dataset (Figure 1). These 
accuracies were calculated by comparing the predicted results 
of the model to the testing data. Specifically, the accuracy was 
calculated for each pathology type by dividing the number 
of images where the model’s prediction matched the truly 
present pathology by the total number of images of the same 
pathology encountered by the model. In other words, the 
equation used to calculate accuracy for each pathology was: 

The skin pathology types that had the highest accuracies were 
dermatofibroma and vascular lesions, with accuracies of 

Figure 1: Percent accuracy for each of the seven skin pathology 
types. The penultimate bar represents the average accuracy across 
all 7 skin cancer types, which was 84.05%. This exceeds the industry 
standard of 80% (5) shown in the rightmost bar by 4.05%. Vascular 
lesions had the highest accuracy (99.53%) and melanoma had the 
lowest accuracy (70.63%). Data shown as mean ± SD.
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99.53% and 99.20%, respectively. The skin pathology types 
with the lowest accuracies were melanoma and melanocytic 
nevi, with accuracies of 70.63% and 69.26%, respectively. 
	 The skin pathology type with the highest sensitivity was ac-
tinic keratosis, at 0.9268, and the skin pathology type with the 
lowest sensitivity was benign Keratosis at 0.667. The average 
sensitivity among all 7 pathology types (also known as the true 
positive rate, or TPR) was found to be 0.8294 (Figure 2). Sen-
sitivity is different from accuracy, which is the ratio of correctly 
predicted observations to the total observations (19). Accu-
racy includes true negative values and false positive values, 
while sensitivity does not. However, accuracy and sensitivity 
are related. A smaller number of false negative values would 
increase the sensitivity, or true positive rate. Just as with ac-
curacy, the number of false negatives would decrease with a 
larger amount of data. Thus, the sensitivity would increase.
The average runtime per image was calculated by the code to 
be just under 5 seconds, at 4.9775 seconds. This was calcu-
lated by dividing the total runtime for the images in all epochs 
by the number of individual images analyzed. 
	 To evaluate the model for possible overfitting, training and 
validation loss curves were used to analyze how well it fits the 
training and new testing data, respectively (20). We noticed 
that both the training and validation loss curves flattened out 
and did not diverge from each other at any point (Figure 3). In 
general, we noticed that the accuracy increased logistically (r 
= 0.732) as the number of original data images (before modifi-
cation) for each pathology (Figure 4).

DISCUSSION 
	 One of the key benefits to a machine learning algorithm 
is its accuracy. Accuracy is especially important to our CNN 

model, as it detects potentially life-threatening diseases such 
as skin cancer. The average accuracy of 84.05% from our 
machine learning model was 4.05% higher than the accuracy 
of dermatologists with at least 10 years of experience of 80% 
(5). Specifically for melanoma, the deadliest form of skin 
cancer, the algorithm was able to detect the disease with a 
70.63% accuracy rate, exceeding the accuracy of the German 
dermatologists of 70% by 0.63%, although this difference may 
not be significant (7). Even then, the accuracy of our model 
was still limited by the data, as inconsistent numbers of images 
across different skin cancer types meant that sampling and 
data augmentation techniques had to be used, as opposed 
to all of the 11,034 images available data in the HAM10000 
dataset. That is to say, the data augmentation and sampling 
in addition to the reduced number of total images used due 
to these methods, served a net benefit. However, in a more 
ideal (albeit unrealistic) case, data augmentation nor sampling 
would need to be used to achieve a balance between the 
distribution of images across pathologies. This would allow for 
maximal data inputs, thereby increasing accuracy. 
	 Around 80% of all diagnosed skin cancer cases are basal 
cell carcinoma, making it not only the most common form of 
skin cancer but also the most common cancer in the world (21). 
Our model had a high accuracy for this disease, at 92.78%, 
making it the third highest accuracy of the seven pathologies/
cancers detected by the model. In fact, the 92.78% accuracy 
is well over the 78.5% accuracy for dermatologists, supporting 
that such a model could have important clinical implications 
(22). Comparatively, melanoma is a rarer form of skin cancer, 
accounting for less than 1% of all cases (23). Due to its 
high mortality rate, a high diagnosis accuracy is important. 
Although not the highest accuracy compared to that of other 
pathologies/cancers detected by our model, the accuracy for 
detecting melanoma was 70.63%, slightly higher than the 70% 
accuracy of dermatologists (7). The most accurately detected 
pathology by the model was dermatofibroma at a rate of 

Figure 3: Training and validation loss curves. The training loss 
curve indicates how well the model has adapted to the training data 
being fed in, while the validation loss curve evaluates how well the 
model is curve is generalizing patterns to make future improvements 
to the model. Since accuracy and loss are inversely proportional, the 
lower the loss value (y axis), the higher the accuracy and consistency 
of the model. The number of epochs (x axis) indicates the number of 
iterations run thus far on the model. Since the curves do not diverge 
from each other and flatten out as the number of epochs increases, 
overfitting is at a minimum.

Figure 2: Sensitivity for each of the seven skin pathology types. 
The rightmost bar represents the average sensitivity across all 7 skin 
cancer types, which was 0.8294. Vascular lesions had the highest 
sensitivity (0.9479) and benign keratosis had the lowest sensitivity 
(0.6667). Data shown as mean ± SD.
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99.53%. Dermatofibroma has high real-world applicability 
given that the pathology is somewhat common. Around 3% 
of all skin lesions, which are not necessarily dangerous or 
cancerous lesions, are cases of dermatofibroma (24). Our 
model’s ability to detect dermatofibroma at a high rate is key, 
given that dermatofibroma patches on women’s bodies are a 
key indicator of risk developing breast cancer (25).
	 The pathology that was detected with the lowest 
accuracy by the model was melanocytic nevi (69.26%). The 
lesion associated with melanocytic nevi is quite common, 
especially for people with lighter skin, and can lead to a 
higher risk of melanoma (26). However, its implications are 
less severe; neurocutaneous melanosis (a broad term for rare 
neurological disorders) affects 5–10% of people that have a 
giant congenital melanocytic naevus, the majority of whose 
cases remain asymptomatic (27). The relatively low accuracy 
of the prediction of melanocytic nevi can be explained by the 
smaller number of data images for the pathology, as there 
were only 167 images that featured melanocytic nevi in the 
original HAM10000 dataset. Fortunately, the accuracy for 
all skin cancer/pathology types, including melanoma, can 
increase with a larger amount of data, especially when such 
an algorithm is implemented into the real world and more 
images are gathered through patient diagnosis.
	 A 0.1 test size was used so that the model would generalize 
the patterns more accurately as a result of having more data 
to train with. It would have more images to compare to the 
patterns in the test images, improving the pattern recognition 
of the image processing. This smaller test size allowed for an 
even larger training size (90% of all data), which was especially 
important given the limited number of images in the dataset.
Overfitting is often a concern with machine learning, which 
occurs when a function is too closely aligned to a limited set 
of data points. It causes the model to pick up noise or random 
fluctuations in the data with higher frequency and learned as 
patterns instead of variations. Thus, overfitting increases the 
number of false positives (28). In this case, overfitting could 
potentially occur for the skin pathology types that had fewer 
images (melanocytic nevi and melanoma) in the original 
HAM10000 dataset. This would cause the model to correctly 
identify the skin pathologies in a small dataset but fail to work 

for larger datasets. However, by using data augmentation 
techniques where the data was varied in ways such as 
changing coloration, stretching, rotating, and blurring, we 
created a larger and more varied dataset to reduce overfitting 
(29). Thus, the potential problem of overfitting was limited by 
creating an artificially larger dataset. Since the training and 
validation loss curves flattened out as the number of epochs 
increased, there is no significant overfitting of the model, 
suggesting its validity (Figure 2). 
	 Specifically, this can be explained by the fact that a more 
varied pool of relevant data diversifies the ways in which data 
variables (such as pixel density and colors) are learned by 
the model in the training phase, thus increasing the accuracy. 
Although data augmentation techniques are not perfect, 
since they create slightly modified copies of images rather 
than unique images, giving the model a less diverse pool of 
images to learn from. However, in general, the use of data 
augmentation is beneficial for creating a more diverse dataset. 
While data augmentation is by no means a substitute for real 
datasets, it is a better alternative to using an insufficient set 
or subset of data in the absence of a larger one. The model 
had a lower accuracy when classifying pathologies with an 
initially small number (melanocytic nevi and melanoma) of 
data images in the original data set, and thus relied more 
heavily on augmentation to reach the 2000 images used in 
the model, had. On the other hand, pathologies that initially 
had over 2000 images (actinic keratosis, benign keratosis, 
basal cell carcinoma, vascular lesions, and dermatofibroma) 
did not have to rely on data augmentation; instead, a sample 
of the available images was selected for training and testing 
the model, resulting in a higher accuracy. If data augmentation 
techniques were not used, the accuracy for pathologies 
that had relatively fewer images in the original data set (like 
melanocytic nevi and melanoma) may have been much lower. 
Indeed, if this project were implemented in the real world, 
neither overfitting nor the need to create an artificially larger 
dataset would be a concern; hospitals could add to and access 
a large, public database and thus increase accuracy. 
	 Compared to our machine learning algorithm’s low average 
runtime per image (4.9775 seconds), the wait time for biopsies 
to provide test results (2 to 3 weeks) is much slower than the 

Figure 4: Model accuracy vs original sample size for each of the seven skin pathology types. The blue line is a logarithmic line of best 
fit; there is a strong, positive, logarithmic relationship (r=0.732) between the two variables. The error bars represent the standard error of the 
model accuracy for all skin pathologies combined. Data shown as mean ± SD.
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algorithm to output results (10). It is in the best interest of the 
patient to be diagnosed quickly to prevent disease progression 
and defray the cost differences between treating the different 
stages. The typical wait time for biopsy results is enough time 
for a skin cancer to escalate to a higher stage of severity. The 
quicker the skin cancer is identified, the sooner treatment can 
begin for a patient.
	 Although no exact statistics on the ancestral or racial 
distribution of the skin pathology images in the HAM10000 
dataset are available, the dataset was put together from a 
collection of international images, encompassing different 
skin colors. It can be inferred that cases where the skin color 
matches the pathology color decreases the accuracy and 
increases the runtime of the detection. If such a model is 
implemented into the public healthcare system, as even more 
data is inputted into the model from various nations and the 
model’s performance improved, a variety of images would 
potential allow for a high level of performance regardless of 
background skin color. This would also allow for adaptation of 
the model for different skin colors and increase the accuracy 
for each, where different variations of the model could be 
trained for different skin colors. 
	 One of the primary drawbacks of CNN models may be their 
strength, depending on the nature of the purpose for their task 
at hand; CNNs analyze each layer independently at the same 
time, and the relation between different layers of the image is 
often disregarded (30). For this project, the issue was not a 
major one since images of skin lesions are relatively simple, 
where the lesion is surrounded by skin of a somewhat distinct 
color.
	 The results of the algorithm met or exceeded the 
performance metrics obtained from past research on 
conventional diagnoses of skin pathologies and cancers and 
therefore support its feasibility. A novel machine-learning 
algorithm that diagnoses cutaneous pathologies including, 
but not limited to, potentially malignant skin cancers can be 
used to create a more convenient solution to skin pathology 
identification without the need for traditional medical 
procedures, which can be inaccurate, time-consuming, and 
inaccessible. The fast runtime, coupled with the high sensitivity 
and accuracy of the model, indicates that it may outperform 
conventional methods. If the software were incorporated 
into a clinical setting, an increasingly large amount of data 
would be beneficial to increase the sensitivity and accuracy 
of the algorithm. Future studies can explore the degree of 
benefit of a larger amount and variation of data for the model. 
Further, with the constant addition of data, which a machine 
learning model uniquely allows for, the model’s accuracy and 
sensitivity metrics could increase at rates potentially faster 
than healthcare professionals gain expertise. The fact that 
an automated software solution is cheaper (both for hospitals 
and patients) and more globally accessible makes it even 
more favorable for detecting diseases such as skin cancer 
or identifying skin pathologies prior to developing into more 
serious complications. The cost for hospitals to use such 
algorithms would further decrease as the software could be 
used on the mass market. 

MATERIALS AND METHODS
	 To create the model, the Python programming language 
was used along with the Jupyter Notebook Integrated Devel-
opment Environment (IDE). All the 11,034 images and CSV 

files for the CNN model were taken from the HAM10000 da-
taset, a publicly available dataset on the website Kaggle.com 
(17). The images are all of skin pathologies, both benign and 
malignant. No particular subset was chosen prior to running 
the model to increase the potential sample size of data; all 
images were used prior to data augmentation. CSV files were 
used to read and visualize the distribution of the data for fac-
tors like skin localization (which part of the body the skin pa-
thology was located), age, and gender but were not actually 
used for preparing the data or training and testing the model 
itself. 
	 Since there were different numbers of image files for each 
skin pathology, it was necessary to edit the dataset to keep 
the number of data inputs consistent. The number chosen for 
this was 2000 images per skin pathology/cancer, as this was 
approximately the average number of images per pathology. 
To do this, all data files were separated into classes, randomly 
resampled, and combined back into a single data file that the 
code would read. Resampling was done by repeatedly draw-
ing subsets from the training dataset and refitting a particular 
iteration of the model on each sample. It was key so that the 
images for all 7 pathology types would be in a random order 
and easier for the model to quickly access and analyze.
	 Since the dataset included 7 skin pathology types with few-
er than 2000 images, data augmentation was used to artificially 
generate new images from the originals and thus increase the 
number of images. The data augmentation was done with the 
Sequential function of the Keras package. Different augmen-
tations were applied to the image, by individually accessing 
Keras preprocessing layers and modifying each of them us-
ing a random combination of 7 different methods. The 7 used 
for this model specifically were: RandomFlip, RandomRota-
tion, RandomContrast, RandomCrop, RandomZoom, Resiz-
ing, and Rescaling. These processed and modified versions 
were finally made part of the model using Conv2D function. 
By modifying the layers of images in this manner, new images 
were artificially created to add images to any pathology types 
for which there were less than 2000 images in the original 
HAM10000 dataset. For pathology types with more than 2000 
images, we selected a random selection of 2000 images for 
analysis.
	 Since the model would need to train itself while testing its 
predictions against images that are already known, both train-
ing and testing data had to be used. To do so, the test size 
was 0.1, meaning that 10% of all the data was used to test 
the model, and the remainder of the data was used to train the 
model through iteration. 
	 As for the model itself, AutoKeras, an open-source soft-
ware library for automated machine learning, was used to find 
and implement the most optimal machine learning model out 
of 25 possible neural network architectures (31). This was 
done in tandem with compiling the model with the Adam opti-
mizer algorithm, a popular optimization technique for gradient 
descent, and the categorical cross-entropy loss function (pop-
ular for multi-class classification tasks) to finalize the imple-
mentation of the model (32, 33). The specific model used, Au-
toModel, combines a HyperModel and a Tuner to tune to Hy-
perModel (34). To further increase the efficiency of the model, 
the MaxPool2D layer and Dropout technique were used to 
down sample the input by taking the maximum value over the 
input windows and dropping out some nodes of the network, 
respectively (35). Next, the SoftMax function, which converts 
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a vector of numbers into a vector of probabilities, was used 
to allow for the easy selection of the vector with the 7 highest 
probabilities for the model (36). The last step was to train the 
model. The training used a batch size of 200 images for each 
of the 50 epochs, using the vast majority of the allocated train-
ing data. Training and validation loss curves were graphed to 
check for potential overfitting as well. 
	 After the model was created and run, a confusion matrix 
was generated using the heatmap function of the Seaborn 
package, which was ultimately used to calculate the average 
sensitivity of the model for each of the seven pathology 
types. This confusion matrix was used to indicate the number 
of predictions that were classified correctly. True positive and 
false negative values were used to analyze the performance 
of the model. A true positive (TP) outcome is one where the 
model’s prediction matches the actual skin pathology present. 
A false negative (FN) outcome is one where the model’s 
prediction says a truly present skin pathology is not featured 
in the image. The sensitivity or true positive rate (TPR) was 
calculated with the following equation:

In general, sensitivity is a measure of the proportion of actual 
positive cases that got predicted as positive (or true positive). 
Thus, it is also known as the true positive rate, or TPR (19). 
Specifically, it implies that there would be another group of 
cases where the model encounters an image that contains 
a certain disease but believes that the actual disease is not 
featured. 
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