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expansion of the electrical grid, especially as a result of 
the increasing number of decentralized renewable energy 
suppliers, it is highly important to forecast power production 
(the supply side) as well as forecast power consumption (the 
demand side) in order to ensure smooth grid scheduling (4). 
Therefore, forecasting models that can predict future solar 
power production and consumption are important in solving 
the intermittency problem; in fact, the progress of all other 
forms of intermittent renewable energy are also dependent 
on such models (4, 5). 

In the past two decades, there has been increasing 
interest in the intersecting area of artificial intelligence (AI) 
and energy systems research. AI can deliver data-driven 
forecasts and perform predictive modelling for energy 
production, consumption, and system maintenance, as 
well as other key aspects of grid scheduling, all with a high 
accuracy and speed (4, 6). 

For AI models that forecast solar PV power production, 
the most recently proposed state-of-the-art models in the 
literature primarily use weather data as inputs (3). These 
model inputs can include data such as solar radiation, 
temperature, pressure, different types of precipitation, 
humidity, cloud coverage, wind speed and direction, and 
other types of relevant meteorological data (7). However, 
while most PV power production forecasting models in the 
literature are primarily reliant on weather data, there are 
essential issues with obtaining weather data on a regular 
basis, which renders these models impractical. These 
types of weather data must be purchased regularly from 
weather service companies by energy providers, generating 
high costs for the use of such a model (4, 8). More ‘simple’ 
weather data, such as forecasts of the future temperature of 
an entire region or forecasted probabilities of precipitation in 
the region are sometimes offered free of charge. However, 
more ‘complex’ data that is highly specific or requires high 
accuracy, such as forecasted solar irradiation of a PV system 
at a particular location at a highly specific time, has to be 
purchased at a high cost. Obtaining this data on a daily, 
hourly, or sub-hourly basis increases these costs even more. 
Furthermore, constant communication with weather services 
is needed to obtain this data, especially for forecasts with 
smaller time increments. If communication failures between 
weather services and energy providers do occur, such as 
internet outages, weather-based models can then no longer 
be used to predict power generation. This poses immensely 
large risks to grid operations and scheduling (3).

However, there is another type of input data that can be 
used as a potential better alternative in power production 
forecasting models: past power production data. This is 
because past power production data is freely available 
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SUMMARY
Several studies have applied different machine 
learning (ML) techniques to the area of forecasting 
solar photovoltaic power production. Most of these 
studies use weather data as inputs to predict power 
production; however, there are numerous practical 
issues with the procurement of this data. This includes 
the high costs of procurement and lack of backup 
techniques if communication with weather data 
services fail. These practical issues are not widely 
considered yet in the current literature. This study 
proposes models that do not use weather data as 
inputs, but rather use past power production data as 
a more practical substitute to weather-based models. 
Similar studies have shown satisfactory accuracies, 
but this study proposes a novel data preprocessing 
technique—cyclical features encoding—that 
we hypothesized would boost model accuracy 
significantly. We used ML techniques to predict 
power production in a 24-hour time horizon, using 
input data of the past 48 hours of power production. 
The Random Forest model offered the best results, 
with a Pearson Correlation Coefficient of 0.97 (11% 
higher than previous studies), Mean Absolute Error 
of 0.0266 (60% better than previous studies), and 
Root Mean Squared Error of 0.0773 (38% better than 
previous studies). These results are comparable 
to state-of-the-art weather models in the field. Our 
proposed models demonstrate a better, cheaper, and 
more reliable alternatives to current weather models.

INTRODUCTION 
In the last few years, innovations and research in the field 

of photovoltaic (PV) solar cells have led to a large increase in 
their efficiency (1). With the recent onset of climate change, 
PV cells are of special interest globally, as they are able to 
produce high amounts of energy with low installation costs 
and without emitting greenhouse gases (2). However, as the 
widespread integration of PV technology into the electrical 
grid is being considered, a key challenge to solve is solar 
power’s intermittency (3). Like most renewable energy, 
solar PV technology is dependent on weather conditions, 
making its power production highly volatile and unreliable 
compared to other traditional energy sources such as fossil 
fuels, where humans control the amount of energy production 
by burning fossil fuels to match power consumption needs 
(3). This intermittency of solar energy poses large barriers 
to controlling and planning in energy systems. With the 
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to energy providers, as they are the ones producing this 
data. Furthermore, it is more reliable as no communication 
is needed with external services. Also, the past power 
production data has a high, direct correlation with weather 
data, meaning that it can be used as a potentially effective 
substitute (8). Previous studies have shown that simple models 
that use past power production data only can indeed yield 
satisfactory results; however, they are not yet comparable in 
accuracy to the current state-of-the-art weather models in 
the field using weather data (3). Thus, it has been proposed 
by these studies that such non-weather-based models only 
be used as a backup or an emergency solution to traditional 
weather-based models (3, 8). One such study by Ordiano 
et al. used past power production data and time as inputs 
only, predicting the next 24 hours of power output using the 
past 48 hours of power output data (3). This study was highly 
consequential in the field because it was one of the first to 
point out that practicality should be a key factor considered 
in the development and evaluation of PV power forecasting 
machine learning (ML) models. The authors examined four 
simple polynomial techniques and two artificial neural network 
(ANN) models that yielded quite low errors: a mean absolute 
error (MAE) from 0.0664 to 0.0725, a root mean squared 
error (RMSE) from 0.1247 to 0.133, and Pearson Correlation 
Coefficients (PCC) from 0.8581 to 0.8765. However, current 
state-of-the-art weather-based models in the literature are 
able to perform better than these metrics and also account for 
extreme weather volatility (4). Hence, the authors proposed 
these non-weather-based models as only a backup offline 
solution in case of communication failures with weather 
services (3). This study was one of the first studies in this 
area of research to recognize practicality as a key factor to 
evaluating a model (thus its approach to using non-weather 
data) (3). Other works in the field usually consider complexity 
of model, user-friendliness, accuracy, and speed (4).

Our project builds on this previous work by using a novel 
data preprocessing technique to significantly increase the 
accuracies of non-weather-based models: cyclical features 
encoding of time features in the data. A non-weather-
based model has two types of data in its inputs: past power 
production and time. In order to be processed by the ML 
model, the time input can be broken down into multiple 
relevant numerical inputs, such as day of the month, month 
number, etc. However, adding these time features to a ML 
model can increase the prediction error. This is because 
many of these time features are cyclic in nature, but the ML 
model interprets them as linear. For example, if the model is 
training on data from January 31st and February 1st, it is likely 
that their power production output are similar, as they are only 
24 hours apart. Thus, a ML model should be able to detect 
a close relationship between the two dates’ data. However, 
while considering the time features data for these two dates, 
the ‘day of month’ feature will be 31 and 1, respectively. This 
will cause the model to interpret the relationship between 
these two dates as highly dissimilar, which may decrease the 
accuracy of the model. To make the model understand cyclical 
time features, feature engineering methods such as cyclical 
feature encoding can be used. Mathematical functions like 
sine and cosine can transform linear time data into cyclical 
data. Thus, we predict that encoding cyclical features will 
allow for the model to better interpret the data, leading to a 
significantly higher accuracy in predictions.

The goal of this study was to investigate if the novel 
proposed technique of cyclical features encoding improve 
the accuracy of non-weather-based models, and whether 
they would be high enough to be a viable substitute to current 
state-of-the-art weather-based models. In order to directly 
build on previous results, we used the same methodology 
and the same dataset, and then tested our novel cyclical 
features encoding preprocessing technique to determine if 
the accuracy could be increased. We hypothesized that if 
cyclical features encoding is used for time features, then the 
model accuracy will increase significantly, because the model 
will be better able to interpret the cyclical nature of the time 
data. We used ML techniques to predict power production 
in a 24-hour time horizon using input data of the past 48 
hours of power production. The Random Forest model 
offered the best results, with a PCC of 0.97 (11% higher than 
previous studies), MAE of 0.0266 (60% better than previous 
studies), and RMSE of 0.0773 (38% better than previous 
studies). These results are comparable to state-of-the-art 
weather models in the field, and thus our proposed models 
demonstrated a better, cheaper, and more reliable alternative 
to current weather models.

RESULTS
In this study, we evaluated the performance of seven 

different neural networks (NN), alongside various traditional 
models (Table 1). For the NNs, we changed two variables 
in the model architecture: the number of units in each of the 
dense layers (ranging from 8 to 1000 units), and the number 
of epochs (ranging from 10 to 30 epochs) (Table 1). The 
difference between NN6 and NN7 for instance is the number 
of units in each of the dense layers (Table 1). We used the 
freely-available Ausgrid dataset online (the same dataset 
used by Ordiano et al.), which included power production 
data at 30-minute temporal-resolution from the rooftop PV 
systems of 300 customers in Australia (hence, we had 48 
data values for every 24 hours of data) (3).

We had two approaches in this study, finding f(P) (where 
the function f( ) of the past power production data input P 
represents the predicted value of future power production), 
and finding f(P,Msin,Mcos,Dsin,Dcos) (where P is the past power 
production data input, Msin is the cosine of the numerical 
month value, Mcos is the sine of the numerical month value, Dsin 

Table 1: Neural Networks (NN) Model Architecture. This table 
explains the specific architecture of each of the seven models that 
this study tested. All of the models had 96 input units and 48 output 
units. All of the models used Mean Squared Error (MSE) as the loss 
function used to compile the model, and all the models used the 
ReLu activation function for all layers.
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is the sine of the numerical day value, and Dcos is the cosine 
of the numerical day value—and the function f( ) represents 
the predicted value of future power production). For this latter 
approach (finding f(P,Msin,Mcos,Dsin,Dcos)), we used the cyclical 
features encoding technique, by taking the sines and cosines 
of the month and day numerical values and adding it as a data 
input. Before taking the sine and cosine of the month and 
day values, we first normalized them into the pi scale (a scale 
from 0 to 2π). And before that, the same steps were taken 
to treat the data as Ordiano et al., including outlier detection 
and elimination, normalization, missing data treatment, and 
synchronization.

To evaluate our machine learning models, we used MAE, 
RMSE, and PCC. MAE and RMSE are error metrics in the 
same units, which allowed for comparisons between models 
and between the two data approaches in our study; whereas 
PCC (which measures strength of correlation between the 
predicted value and the actual value) specifically also allowed 
us to make cross-study comparisons with state-of-the-art 
models in the field used for the same purpose (this was 
helpful to see if our models were better, worse, or equal to the 
accuracies of state-of-the-art models). More details on these 
methods can be found in the Materials and Methods section.

For f(P) without cyclically encoded time features, the 
highest-scoring RMSE was 0.0888 from NN6, the highest-
scoring MAE was 0.0344 from NN6, and the highest-scoring 
PCC value was 0.9662 from NN7 (Table 2). On the other 
hand, the lowest-scoring RMSE was 0.1046 from Decision 
Tree (DT), the lowest-scoring MAE was 0.0422 again from 

DT, and the lowest-scoring PCC was 0.836 from NN6 (Table 
2). This latter result was slightly surprising, as NN6 had the 
highest MAE and RMSE scores. However, NN6 was the 
highest-scoring model overall, as it scored the highest in 
two out of the three evaluation metrics: RMSE and MAE. On 
the other hand, DT was the lowest-scoring model overall, 
producing the lowest scores in these same metrics. The 
average scores from all the models were an RMSE of 0.0933, 
a MAE of 0.0381, and a PCC value of 0.9287 (Table 2).

However, for f(P,Msin,Mcos,Dsin,Dcos) with additional 
cyclically encoded time features, the highest-scoring model 
was Random Forest (RF) for all metrics, with a RMSE 
of 0.0773, MAE of 0.0266, and PCC value of 0.9695. 
Conversely, the lowest-scoring RMSE was 0.1606 from 
NN6, the lowest-scoring MAE was 0.0562 from NN6, and 
the lowest-scoring PCC value was 0.9067 from NN2. Hence, 
the overall highest-scoring model was RF in this case, while 
the overall lowest-scoring model was NN6 in this case (as it 
scored the lowest in two out of the three evaluation metrics—
RMSE and MAE). The average scores from all the models 
were an RMSE of 0.0969, a MAE of 0.0400, and a PCC value 
of 0.9483. Overall, this means that all the evaluation metrics 
showed that compared to f(P), the addition of cyclically 
encoded time features in f(P,Msin,Mcos,Dsin,Dcos) contributed to 
a dramatic improvement in two of the three metrics (where a 
lower RMSE and MAE are more desirable, and a higher PCC 
is more desirable). Compared to f(P), for the predictions by 
f(P,Msin,Mcos,Dsin,Dcos), the highest-scoring RMSE value was 
13% better, the highest-scoring MAE was 23% better, and the 
highest-scoring PCC value was 0.34% higher. There was a 
large improvement in the lowest-scoring model’s PCC value, 
with an improvement of 8.46%, from 0.836 to 0.907.

As we considered the study by Ordiano et al. as a 
baseline, we compared the highest-scoring models from their 
study with the highest-scoring models from this study (Table 
3) (3). The improvement in percentages is shown. Note that a 
comparison is made for both the case where only past power 
production data was used by both studies, as well as the 
case where the additional time features were also used by 
both studies. However, for the latter, the method of using time 
features was markedly different for both studies: the present 
study made use of cyclical features encoding the month and 
day of month features, while the other study made use of a 
linear time of day feature (3). The results show that there was 
significant and considerable improvement in every single 

Table 2: Evaluation results for all models with f(P) and f(P, Msin, 
Mcos, Dsin, Dcos). The three metrics that were used for evaluation are 
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
and Pearson Correlation Coefficient (PCC). Other than the 7 neural 
networks (NN), the other models used were Linear Regression 
(LR), K-Nearest Neighbors (KNN), Decision Tree (DT), Multi-Layer 
Perceptron (MLP), and Random Forest (RF). The highest possible 
PCC is 1, the lowest possible is 0; the lowest possible MAE and 
RMSE is 0, the highest possible is infinity. PCC does not have units, 
while MAE and RMSE are measured in kilowatt-hours (kWh).

Table 3: Comparison of our highest-scoring models with the 
highest-scoring models of Ordiano et al. (3). The three metrics 
that were used for evaluation are RMSE, MAE and PCC. -% for 
RMSE and MAE is an improvement, +% for PCC is an improvement.
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evaluation metric from the baseline study, for all models (3). 
When considering the improvements between their models 
and our models, for using only past power production data, 
the RMSE was 29% lower, the MAE was 48% lower, and the 
PCC value was 10% higher. Furthermore, for using additional 
time features, an even higher improvement was found than 
the improvements when using only past power production 
data. In our study, the RMSE was 38% lower, the MAE was 
60% lower, and the PCC value was 11% higher. Overall, there 
were dramatic improvements for all metrics. 

DISCUSSION
The hypothesis of this study was that if cyclical features 

encoding is used for time features, then generally all models’ 
accuracy will increase. The results of this experiment show 
that this approach can lead to a large decrease in errors 
generally in all models, and thus our hypothesis was shown 
to be correct. Overall, there are three main takeaways from 
the results. First, using additional cyclically-encoded time 
features in the models yielded significant improvements, 
versus using only past power production data. Second, our 
approach yielded large improvements from the baseline study 
by Ordiano et al., for both cases of past power production 
data only and the additional time features, with the latter 
showing even more improvement than the former (3). Third, 
the highest accuracy achieved was 97%, from the RF model 
with cyclically-encoded features.

An example of one of our most high-scoring models is NN6 
(Figure 1). One key finding from NN6 is that during the peak 
power production hours of each day, the model is the poorest 
at making predictions; on the other hand, it predicts all other 
times of the day relatively well. Another key finding is that the 
model has difficulty predicting volatile power production, as 
between Day 2 and 4, fluctuations in power production were 
not addressed by the model. This is likely due to the fact that 
the past power production data of 48 hours does not reflect 

weather volatility as well as direct weather data (Figure 1).
It is important to address some additional reasons why 

we observed increased accuracy unrelated to the inclusion 
of cyclical time features. First, instead of using three years of 
Ausgrid data to train the model like Ordiano et al., this study 
used only one year of data from 2012 to 2013. This was done 
in order to allow the model to catch more specific trends in 
seasonality of just the one year (3). This likely allowed for 
more accurate predictions, explaining the improvement 
without using cyclical features encoding. Second, while 
the study by Ordiano et al. used the data of 54 households 
from 300 due to missing values in their 3-year dataset, this 
study used all 300 households’ data in its 1-year dataset. 
This allowed for our models to train on nearly six times more 
data, which may have contributed to these improvements 
(3). Third, the ML techniques used were different between 
the studies. Ordiano et al. used techniques that were simpler 
in nature and less diverse than the ones tested in this study 
(Table 1) (3). The techniques we used are some of the most 
commonly used in the field of ML and are known for their 
ability to produce accurate results in a very simple and 
efficient way. These better ML techniques are likely part of 
what led to the improvements from the baseline study without 
even considering the cyclical features encoding. 

However, even with these improvements from changes in 
methodology, the singular, isolated effect of the novel cyclical 
features encoding technique can be seen in the staggeringly 
higher improvements from using just past power production 
data. The improvements from the baseline study without 
using cyclical features encoding were a 29% better RMSE, 
48% better MAE, and 10% better PCC. However, with cyclical 
features encoding, the improvements from the baseline study 
were a 38% better RMSE, 60% better MAE, and 11% better 
PCC. All of these make it clear that using the novel technique 
of cyclical features encoding markedly improved the results. 
This is likely because the model was better able to interpret 
the cyclical nature of the time data with the engineered sine 
and cosine features, as opposed to the linear nature of the 
original time data. 

There are some ways that these results could be further 
improved, and some considerations that need to be made 
about the proposed models. First, other cyclical time features 
could be added, like season. This has the potential to improve 
the results as it is another significant piece of data that 
could be feature encoded to be cyclical and inserted into 
the dataset. This is because seasons are another useful and 
cyclical piece of data. Second, performing other forms of 
feature engineering may potentially improve the results, such 
as adding maximum, minimum, average, median, or even the 
range of the power production of each day. These statistics 
could help the model further in interpreting the nature of the 
power production data. Third, it is important to understand that 
only for regions with extremely volatile weather conditions, 
these models may not be as effective, but there is a way to 
still use them and save the cost of purchasing expensive 
weather data. Other types of weather data can be obtained 
free of charge, such as future predicted temperatures of an 
entire region or forecasted probabilities of precipitation of 
an entire region. However, it is still likely that the proposed 
models of this study would work best in PV systems that have 
storage systems, so that prediction inaccuracies by the model 
can be easily compensated with energy saved in storage. 

Figure 1: Example Forecast of Predicted Power Output vs. 
Actual Power Output. Neural Network 6 (NN6)’s predictions are 
shown for the first five days of the year.  The model’s predictions 
for power output (in blue) for all 24 hours of each day of the first five 
days of the year (from January 1 to January 5) are shown. They are 
compared with the actual power output values (in red). The results 
indicate that the model was able to capture the trends of the data 
during days with stable weather, while the model performed less well 
during days with more volatile weather.
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Fourth, though generally the models’ predictions indicate 
low signs of overfitting (the models appear to be grasping 
the general trends of the data), future studies can improve 
the experimental design by including a validation split when 
splitting the data (Figure 2). Though this study used a 90:10 
train/test split, a 60:20:20 or 80:10:10 train/test/validation split 
could also be used to be used to further improve the model’s 
generalization abilities and to help it avoid overfitting. Fifth, 
another consideration this study did not make that may have 
an impact on the results is material sensitivity of PV panels to 
weather conditions—future studies could examine what role 
this plays in power output prediction and whether this creates 
a need for weather data.

Hence, there are three main notable consequences of 
this study. First, the proposed models are practical, cheaper, 
and more reliable alternatives to current state-of-the-art 
weather models. Second, the significant findings of this 
study highlight the importance of practicality in this field. If 
the practicality factor is not considered, such as how the data 
will be procured and whether or not procurement is realistic, 
then the models in the literature only have high accuracies 
in the literature—but no realistic chances for practical 
implementation in the real world. Thus, models that do not 
consider practicality are not useful to energy companies, 
and this study can serve as a catalyst for the consideration 
of the practicality factor in the field. Third, it is important to 
realize that weather data is used commonly not only in the 
forecasting of solar energy power production but also other 
forms of renewable energy that are dependent on weather 
conditions, such as wind energy. The same problems with 
weather-based models outlined in this paper for solar energy 
are true for wind energy. However, the solutions outlined in 
this paper, of using past power production data and a novel 
cyclical features encoding technique, can also be applied to 
create non-weather-based models for wind energy. The same 
premise of using cheap and readily-available forms of data 
like past power production data can also be applied to other 
forms of renewable energy, including hydro power and marine 
energy. The high accuracies found in this study show that 
there is a promising future in non-weather-based models and 
past power production data-dependent models for various 

forms of renewable energy power production forecasting that 
can act as a highly substantial cost-saver and a more reliable 
way of forecasting.

MATERIALS AND METHODS
Treatment of Ausgrid Solar Home Electricity Data

The “Ausgrid Solar Home Electricity Data” dataset was 
used, which is available online for free, published by the 
Australian energy provider Ausgrid (8). This data was used 
because it is also the dataset used in the study by Ordiano 
et al., which is the baseline study that we compared our 
results with (3). The dataset includes power production data 
in kilowatts (kW) from the rooftop solar PV systems of 300 
different customers in Australia. The data has a 30-minute 
temporal resolution, giving 48 values for every 24 hours. 

Though in the study by Ordiano et al. data from July 1st, 
2010 to July 30th, 2013 was used, our study only used data 
from July 1st, 2012, to June 28th, 2013 (3). We did this for two 
reasons: first, because the data for this period specifically did 
not have any missing values, thus simplifying the task and 
reducing the need to perform missing data treatment (unlike 
the 3-year dataset used by Ordiano et al., which has many 
missing values and thus requires missing data treatment); 
second, the selection of this period allowed us to use the data 
of 300 households (more training data) instead of only 54 like 
Ordiano et al. (3).

The dataset format was changed from the original in 
order to better fit the structure needed for an ML model. 
Unnecessary features such as customer number, generator 
capacity, postcode, and consumption category were removed. 
The data was split into an input matrix and an output matrix. 
Two copies of the input and output matrices were created: 
one copy with the extra time features (month and day-of-
month) and one copy without any time features. This simply 
means that, for example, for each row in the first copy, we 
included an additional column that indicates what month that 
particular time sample occurred in (numbers 1 through 12 to 
indicate January through December respectively), and also 
another additional column to indicate what day of month that 
time sample occurred in (numbers 1 through 31 to indicate the 
specific day of the month) (Figure 2).

The input matrix was then structured such that each row 
represented one day of power production data; the first 48 
columns were that day’s power production data; the second 
48 columns (column 49 to 96) were the next day’s power 
production data. For the input matrix with time features, 
month and day of month were also added as features, which 
will undergo cyclical features encoding later on. Thus, the 
input matrix without time features had 96 columns, and the 
input matrix with time features had 98 columns. The output 
matrix was structured such that each row represented one 
day of power production data; the first 48 columns were 
that day’s power production data. For the output matrix with 
time features, month and day of month were also added as 
features. There were 108,819 total rows for both the input and 
output matrices. The input data was structured in this way 
so that 48 hours of past production data and optional time 
features could be used to predict the output—24 hours of that 
day’s power production data (Figure 2). Note that the last two 
rows of the input matrix and the first two rows of the output 
matrix were removed for each customer, as there is nothing 
left to predict using the last 48 hours of data and there is no 

Figure 2: Visualization of the datasets. The main difference 
between the two datasets is that the first one does not have any 
cyclically encoded time features, while the second one does.
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available prior data to predict the first 48 hours.

Data Preprocessing (without cyclical features encoding)
The data was prepared using the same process described 

by Ordiano et al., which is briefly summarized as follows: 
outlier detection and elimination, normalization, missing data 
treatment, and synchronization (3). We conducted everything 
aside from missing data treatment, which was not necessary 
as our period of the data did not have any missing values.

Cyclical Features Encoding
Though this is also part of the data preprocessing, this 

step was done after all the other preprocessing steps. From 
the two sets of data (with and without time features), only 
the data with time features went through this step. This step 
was not done by Ordiano et al., as they only used past power 
production data and time inputs (but they did not feature-
engineer the time inputs).

First, the data was converted to a pi scale as a form of 
normalization. If M is the month data, D is the day-of-month 
data, and the subscript n represents ‘normalized data’, then 
Mn is the ‘normalized’ month data, Dn is the ‘normalized’ day-
of-month data, and hence the following functions (Equation 1 
and Equation 2) were used to normalize the data (where Mmax 
and Dmax represent the maximum month and day-of-month, 
respectively).

Mn and Dn were then used to define the sine and cosine 
features of the month and day-of-month—Msin, Mcos, Dsin, 
Dcos—as per Equations 3–6:

These four features were the only ones kept in the dataset 
as the time features, so that the only time data fed into the 
model was cyclical, and the previous linear data forms were 
removed. This process of cyclical features encoding was 
performed on both the input and output matrix of the data set 
with time features.

Machine Learning Algorithms
Before applying the ML algorithms to the data, it is 

important to realize the final, current structure of the two sets 
of data. In the input matrix, there are 96 features of past power 
production data (for the past 48 hours); in the output matrix, 
there are 48 features of that day’s power production data 
(for 24 hours) (Figure 2). The second set of data with time 
features has an additional four columns for both the input and 
output matrices, corresponding to the four cyclically encoded 
time features (Msin, Mcos, Dsin, Dcos).

If we attempt to predict a forecast horizon H of 24 hours 
using the past 48 hours of past power production data, 

then Equation 7 and 8 model this relationship, where    [k] 
represents the predicted value of a time series at sample 
number k, f( ) represents the machine learning function that 
takes in the data inputs, and H1 represents a 24-hour horizon 
(3):

Before being fed into the ML models, the data was split 
into a training and test set with a 90:10 ratio respectively. This 
means that the first 90% of customers in the dataset, or 270 
customers were used to train the model, and the remaining 
10% were used for testing.

The ML techniques tested in this study are a mix of simple 
and complex ML models. Five simple, traditional models and 
seven neural networks are tested. The five traditional models 
include Linear Regression (LR), K-Nearest Neighbors (KNN), 
Decision Tree Regressor (DT), Multi-Layer Perceptron 
Regressor (MLP) and Random Forest (RF). The default 
parameters of each model from the scikit-learn library were 
used in order to simplify the task. The first model, LR, will 
act as the baseline model, to measure how increasingly 
complex models perform against it. The rectified linear unit 
(ReLU) (maximum) activation function is used for all the 
models, so that the models can learn non-linear relationships 
in a fast, efficient way. All the models were compiled with a 
MSE loss function (Table 1). Meanwhile, Ordiano et al. used 
two neural networks as well, four polynomial techniques, 
and a persistence method. Compared to ours, Ordiano et al. 
used much more simple and less diverse machine learning 
techniques. 

Evaluation Metrics
The predictions of the models on test data were evaluated 

using the same metrics as the study by Ordiano et al., so 
that results can be compared directly between both studies 
(3). Three key metrics were measured: MAE, RMSE, and 
PCC, between the actual value and the predicted value        . 
The error in forecasting,ef [k], was calculated by the following 
Equation 9 (as per the study by Ordiano et al.), where P 
represents the actual value and   represents the predicted 
value (3):

used to calculate the three evaluation metrics, using the 
equations below from the study by Ordiano et al., where    and 
 represent the averages of each respective time series and 
K represents the total number of data points (3):

All three metrics were used to evaluate each model. The 
MAE, RMSE, and PCC were all compared directly against the 
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same values of the models in the paper by Ordiano et al. (3). 
As the same dataset has been used, the MAE and RMSE are 
on the same scale, and thus direct comparisons were made 
between the values. The PCC value was used to evaluate the 
model accuracy by measuring just how closely correlated the 
actual values are with the predicted values. The PCC value 
was also used to compare the accuracy of this study with 
other state-of-the-art weather models.
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