
9 JANUARY 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

reach its destination, while the motion planner generates a
trajectory, based on the map of the surroundings provided by
the perception module, for the car to follow to reach the next
waypoint that the mission planner has given (2). The motion
planner also generates a velocity profile for the car to follow
on the current segment of its route (3). The controller of the
car follows the trajectory (lateral control) and speed profile
(longitudinal control) for the section generated by the motion
planner, by setting the steering angle and throttle input for the
car respectively (3).

Multiple algorithms for lateral control have been developed,
based on kinematic models of the vehicle. Algorithms based
on kinematic models use the bicycle model to represent the
vehicle, where the car is represented as a two-wheeled body
with the front wheel providing turning (3). Kinematic model-
based controllers are simple to implement, involve a low
computation overhead and provide reasonable performance
in fixed scenarios at a moderate speed, such as in urban
settings where the speed usually does not exceed 30 miles
per hour (3). Kinematic controllers were used by multiple
vehicles in the DARPA Urban Challenge, including the
winning vehicle, Stanley, which used the Stanley controller.
Three vehicles used the pure pursuit kinematic controller in
the same challenge (3). The Stanley controller aligns the front
wheel of the vehicle with the trajectory while steering towards
the trajectory, whereas the Pure Pursuit controller picks a
point on the trajectory a set distance from the vehicle and
sets the steering angle to move to that point (3).

Existing research is focused on comparing the
effectiveness of such algorithms when controlling conventional
cars. Not much research focuses on autonomous buses, but
they can be more beneficial for the environment and could
improve public transport. When surveyed, people show
positive attitudes towards using autonomous buses (4). If full
autonomous capability is to be achieved, especially in urban
environments, vehicles such as buses or trucks also need to
be made autonomous. The motion of a bus is different from
a car, and so existing lateral control algorithms may be less
effective at navigating longer buses than small cars. For
example, according to the bicycle kinematic model of the
vehicle, the angular velocity of a bus is lower because of
the greater length between axles, making turning harder (3).
Investigating the performance of existing kinematic control
algorithms on longer vehicles would give valuable insights
on how the algorithms could be adjusted to cope with longer

Comparing the performance of lateral control algorithms
on long rigid vehicles in urban environments

SUMMARY
Existing research on autonomous vehicle control is
largely focused on how control algorithms perform
on cars; long vehicles or buses have not been
significantly investigated. Existing studies indicate
that people display positive attitudes to using
autonomous buses, indicating the value of researching
control algorithms for autonomous buses. To provide
insight on the performance of control algorithms on
autonomous buses, we compared multiple lateral
control algorithms on how well they maneuver a
long vehicle around three courses resembling urban
environments. We compared the Stanley and pure
pursuit control algorithms and two new control
algorithms which were improved versions of the
Stanley and pure pursuit controllers. We compared
the control algorithms in a kinematic simulation which
recorded the steering angle and cross track error from
the front axle for each controller driving the vehicle
at 50 km/h around the course. We hypothesized that
the Stanley control algorithm would perform the best
due to its success in navigating existing vehicles. The
Stanley control algorithm had a low cross track error,
but it had a large steering angle and large changes
in steering angle. The pure pursuit controller had
smoother changes in steering angle, but the cross
track error was larger than the Stanley controller. Our
results suggest that none of the algorithms we tested
were optimal, and that an algorithm which can utilize
the ability of the Stanley controller to maintain a low
cross track error while also keeping a low steering
angle change will perform the best for long vehicles.

INTRODUCTION
Self-driving cars have been developing at an increasing

rate over the past few decades, starting with basic highway
driving in the 1980s to almost full autonomous driving
capability showcased in the Defense Advanced Research
Projects Agency (DARPA) Grand Challenges of the 2000s,
where multiple teams from industry and academia developed
vehicles to drive autonomously around courses in the desert
and urban areas (1). Autonomous vehicles feature software
handling perception, navigation, and vehicle control (2).
The perception module uses sensor data to produce a map
of the environment surrounding the vehicle (2). Navigation
modules consist of mission and motion planners (2). The
mission planner finds the route the car should take to

Artyom Boyarov1, Eoin Shannon1

1 Whitgift School, Croydon, United Kingdom

Article

9 JANUARY 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

lengths (such as how gain parameters could be adjusted) or
whether new algorithms need to be designed. Some research
has been conducted into various control algorithms for
articulated vehicles (5), but for non-articulated vehicles of a
long length the performance of control algorithms has not yet
been discussed.

Therefore, the aim of our investigation was to compare the
performance of various lateral control algorithms when used
to control a long vehicle on a trajectory similar to one in an
urban environment. The trajectories used in our investigation
would involve features usually present on roads in urban
environments, such as frequent turns and roundabouts. We
compared the Stanley and pure pursuit control algorithms, as
well as two algorithms designed by ourselves based on the
Stanley and pure pursuit controllers which aim to counteract
their shortcomings. The first new algorithm designed, referred
to as Stanley with Lookahead (SL), was a modified Stanley
controller which used the heading of a point on the trajectory
in front of the vehicle instead of the heading of the point on the
trajectory closest to the vehicle. The second new algorithm,
referred to as Hybrid Stanley and pure pursuit (SPP), either
used pure pursuit control or Stanley control based on the
current cross track error. If the cross track error was above
a certain threshold, the vehicle used Pure Pursuit control to
get back to the trajectory. Otherwise, Stanley control is used
to ensure the vehicle stays aligned with the trajectory. We
hypothesized that the Stanley control algorithm would be able
to achieve smoother turning and a lower cross track error than
the other algorithms and would thus prove to be a better control
algorithm. In the 2005 DARPA Urban challenge, the winning
vehicle uses the Stanley control algorithm, and the vehicle
did not hit any obstacles (6). Furthermore, the authors of the

paper on the Stanley control algorithm highlight the ability of
the controller to operate with a low cross track error (6). In
our investigation, we developed a simulation of the bicycle
kinematic model of a vehicle which simulated the motion of a
vehicle responding to changes in steering angle. The steering
angle was set based on the current control algorithm being
tested. We implemented all of the controllers tested based
on the available literature and the PythonRobotics GitHub
repository (3, 7). To compare each algorithm’s performance,
we measured the average cross track error (measured from
the car’s front axle) as well as the steering angle over time.
The cross track error of the vehicle is defined as the distance
from the vehicle’s rear axle or the front axle to the nearest
point on the trajectory (3). In our experiment, we measured
the cross track error from the front axle of the car.

The major conclusion drawn from our research was that no
control algorithm was able to provide a low cross track error
as well as smooth steering, indicating that an optimal control
algorithm is yet to be developed, or other controllers could
perform better. Therefore, my conclusion did not support my
hypothesis, as the Stanley control algorithm did not have
better steering than the pure pursuit algorithm or the SL
and SPP algorithms. My investigation could be extended to
environments similar to urban ones, such as in a warehouse
where robots may have to transport goods between stations
along fixed paths, or in an airport where transit buses and
other vehicles have designated roads for them to travel on.

RESULTS
To compare the cross track error and steering angle

over time for the control algorithms on the test courses, we
developed a simulation which used the bicycle kinematic

Figure 1: A diagram of a two-axled vehicle illustrating the cross track error and steering angle. The vehicle is represented as a solid
body with two axles with wheels. The steering angle is the angle between the heading of the vehicle and the heading of the front axle. The
cross track error is the distance from the center of the front axle to the closest point on the trajectory. The values for the cross track error and
steering angle were recorded every 0.1 seconds during the simulation, and these values were used as experimental data in our investigation
to evaluate the performance of the control algorithms. The figure was produced using Microsoft Word.

9 JANUARY 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

Figure 2: Course maps of the three courses used for the simulation. Figure 2a is the straight track course. Figure 2b is the three-quarter
turn course. Figure 2c is the roundabout course. Units are in meters, with the values on the axis indicating the position of the point on the
trajectory given as a coordinate. The origin, point (0,0), was chosen arbitrarily for the courses. The bus is shown as a red rectangle at the start
of the course for scale. The figures were produced using the Python programming language and Matplotlib library.

Figure 3: Steering angle of vehicle at 50 km/h on the straight track course using different controllers. Line graph showing steering
angle of front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley
controller (orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow). The results
for the Stanley controller were identical to the SPP controller, hence the orange line for the Stanley controller is not visible. The experiment
was performed once.

9 JANUARY 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

model to simulate a bus travelling at 50 km/h while also
responding to changes in steering angle given by the control
algorithm being tested. In the simulation, we sampled the
vehicle’s cross track error from the front axle and the steering
angle every 0.1 seconds. We chose to measure the cross track
error from the front axle of the car as the front axle guides
the vehicle and having the front axle of the car close to the
trajectory ensures that the car is driving towards the trajectory
(6). In existing control algorithm reports, the cross track error
was also measured from the front axle when evaluating the
control algorithm’s performance (6). Figure 1 shows the cross
track error from the front axle. A lower average cross track
error indicates that the controller successfully follows the
trajectory and remains close to the trajectory. The steering
angle was measured for two reasons. First, large turns will
cause a vehicle to risk overturning, where a vehicle turns too
much and tips over (2). Second, having sudden changes in

steering angle will cause the vehicle to jolt, thereby reducing
passenger comfort (2). Having a lower steering angle with
smoother changes will provide a more comfortable and safer
experience for passengers in the vehicle. After results were
collected in the simulation, they were processed and analyzed
in Microsoft Excel.

The first course (Figure 2a) featured two sections of
straight track connected with two turns. The pure pursuit
controller offered low steering angles and smooth turns,
whereas the Stanley, SL and SPP controllers had a larger
steering angle and more sudden changes in steering angle
compared to the pure pursuit controller (Figure 3). However,
the Stanley and SPP controllers had a much lower average
cross track error than the pure pursuit and SL controllers
(Table 1).

In the second course (Figure 2b), the vehicle took a
three-quarter turn around a roundabout with a diameter of

Table 1: Average cross track error of vehicle at 50 km/h on each course. Table showing the average cross track error in meters of vehicle
on each course for each of the control algorithms tested (pure pursuit, Stanley, Stanley with lookahead, and hybrid Stanley with pure pursuit).
Cross track error was recorded as the distance to the nearest point on the trajectory from the front axle and summed every 0.1 seconds. At
the end of the simulation, the total cross track error was divided by the time taken to calculate the average cross track error. The experiment
was performed once for each course.

Figure 4: Steering of vehicle at 50 km/h on the three-quarter turn course using different controllers. Line graph showing steering
angle of front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley
controller (orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow). The experiment
was performed once.

9 JANUARY 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

20 meters. The pure pursuit controller had smoother steering
than the other controllers (Figure 4). The Stanley controller
had sudden changes in steering angle and a high steering
angle. The SL and SPP controllers had more sudden changes
in steering angle. However, they did not have as high of a
steering angle as the Stanley controller. The Stanley and the
SPP controllers had the lowest average cross track error, and
the pure pursuit and SL controllers had the highest average
cross track error (Table 1).

The last course (Figure 2c) involved a vehicle traversing a
roundabout fully. Similar to the previous experiments, the pure
pursuit controller had smooth steering (Figure 5). However,
at times it had a large steering angle. The other controllers
all had large steering angles, as well as sudden changes in
steering angle. The Stanley controller had the lowest cross
track error, and the SPP had a cross track error which was
not significantly higher (Table 1). The SL and pure pursuit
controller had the largest cross track error.

DISCUSSION
Each of the experiments presented a similar pattern

of results: the pure pursuit controller had smooth steering
and a low steering angle, and the Stanley controller and
SPP controller had the lowest cross track error. For some
experiments the cross track error of the other controllers
compared did not differ greatly from the cross track error of
the Stanley controller, namely the three-quarter turn on the
roundabout course. However, in the experiments, the Stanley,
SPP and SL controllers had sudden changes in steering angle
as well as a large steering angle. The pure pursuit controller
was unable to steer round the turns without having a large
cross track error. For the Stanley controller and the two
new controllers, the sharp steering angle resulted from the

heading of the trajectory changing suddenly, as the Stanley
and new controllers use the current heading of the trajectory
to set the steering angle.

The simulation was quite accurate as it was not affected
by external factors. The steering angle was stored as a
variable in the simulation, meaning there is no measurement
error in recording the steering angle. When the experiments
were repeated, the results obtained were identical. However,
the simulation had the speed fixed to 50 km/h, but in an actual
scenario, the speed of the vehicle will change, especially
while turning. The speed will decrease to help a vehicle round
the turn. In future studies, a more realistic simulator can be
employed to provide more realistic results. For example, the
CARLA simulator, an open-source vehicle simulator, features
advanced vehicle physics and so the effect of turning on the
speed of the vehicle can be observed (8).

The results therefore indicate that no single controller
offers optimal control of a vehicle, thus not providing support to
our hypothesis that the Stanley controller offers good steering
and a low cross track error. The Stanley controller offers a
low cross track error but at the cost of sudden changes in
steering, which would be uncomfortable for passengers or
goods. The pure pursuit controller had smoother turns, but
it had a large cross track error. The SL and SPP controllers
had a lower cross track error than the pure pursuit controller,
but they had poor steering. A controller which can avoid the
large change in steering angle while having a low cross track
error is a possible next step for development. A possible
implementation may be a modified Stanley controller which
outputs a value for the rate of change of steering angle, which
is clamped within a margin, so that the vehicle does not
change the steering angle suddenly.

Apart from looking for an improved kinematic lateral

Figure 5: Steering of vehicle at 50 km/h on the roundabout course using different controllers. Line graph showing steering angle of
front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley controller
(orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow). The experiment was
performed once.

9 JANUARY 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

control algorithm, the possible next step may be to compare
predictive algorithms for following a trajectory, which use
more complex algorithms to find the steering angle and
speed to follow individual segments of the trajectory (3).
Predictive algorithms may offer improved performance than
the kinematic algorithms, albeit at a higher computational
cost. Predictive algorithms can also adjust the vehicle’s
speed while following the trajectory, and so vehicles may
reduce their speed while going round a corner. Articulated
vehicles may also be investigated. Articulated trucks are very
common, and articulated buses are used around the world.
Articulated buses offer higher passenger capacity and faster
transportation and are already used in many cities (9).

Overall, in contrast to initial hypothesis, our research
showed that no control algorithm offered optimal performance.
Each controller either had a low cross track error but high
steering angles, or smooth steering with a high cross track
error. This indicates that none of the kinematic control
algorithms we tested provides optimal results, and so an
algorithm which addresses the shortcomings of the Stanley
and pure pursuit controllers or a predictive algorithm such as
model predictive control may produce better results.

MATERIALS AND METHODS
Overview of the Simulation and Experiment

A kinematic simulation of a two-axled vehicle representing
the bus was developed in the Python programming language
with the Matplotlib library providing a graphical frontend. The
kinematic simulation used was the bicycle model of a two-
axled vehicle, where the front axle of the vehicle provides
turning (Figure 1) (3). The bus was 10 m long in the simulation,
which is a similar length to existing buses. Each control
algorithm was implemented as a function which returned the
required steering angle at each iteration of the simulation.
The simulation was run at a fixed time step of 0.1 seconds.
At each iteration, the function for the control algorithm being
tested was invoked to calculate the steering angle of the
vehicle for the current iteration. The vehicle’s position was
then updated based on the speed and steering angle using
the formulas provided for the bicycle kinematic model (3). In
the simulation, the vehicle’s cross track error and steering
angle were sampled every iteration. A flowchart indicating
how the simulation worked is provided (Figure 6). Control
algorithms were implemented using the available literature as
well as the PythonRobotics GitHub repository (3, 7). In the
simulation, the pure pursuit and Stanley control algorithms
produced a steering angle using the formulas available from
the literature. The SPP controller and the SL controller also
used the Stanley and pure pursuit functions as part of their
processing. We set the speed in the simulation to 50 km/h,
roughly 30 mph, as this is the speed limit in urban areas in
many countries around the world (10).

Each of the simulated courses were chosen to represent a
situation a vehicle might encounter in an urban environment.
The CARLA Simulator, an industry-grade simulator for

autonomous vehicle research, provides multiple maps which
are employed to simulate town environments (11). Namely,
these maps had the following distinct features: straight
sections, right-angled turns, and roundabouts (11). Therefore,
the courses we chose involved traversing two right-angled
turns, traversing a roundabout fully and traversing three-
quarters of the way around a roundabout. The course maps
with the bus presented for scale are provided (Figure 2).
Trajectories for the simulation were made up of straight
segments and curved line segments; points on the trajectories
were generated using linear interpolations and geometric
Slerps.

While the simulation was running, values for the steering
angle and cross track error (measured as the distance from
the front axle to the nearest waypoint, illustrated in Figure 1)
were recorded and then stored in a csv file at the end of the
simulation. These values were then processed and analyzed

Figure 6: A flowchart of the simulation used in the experiment.
Each control algorithm was defined as a function which was called
during every iteration of the simulation. The function would return
a value for the steering angle for the vehicle. The vehicle position
was updated using kinematic equations for the motion of the vehicle
based on the speed and steering angle. The cross track error was
then calculated by finding the Euclidean distance from the center
of the front axle to the closest point on the trajectory and then
recorded. The steering angle, which was stored as a variable, was
also recorded. After updating the position, if the vehicle was within
1 meter of the end goal, the simulation finished. The figure was
produced using Microsoft PowerPoint.

9 JANUARY 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

in Excel. Each control algorithm was tested on each course
once. The experiment was not repeated as the results
produced by the simulation were identical. The average
cross track error was calculated by summing the cross track
error at each iteration in the simulation and dividing the
total cross track error by the number of samples taken. The
code is publicly available; the GitHub page is provided in the
appendix.

Control Algorithms Tested
The first control algorithm tested was the pure pursuit

control algorithm. At each step, the algorithm finds a point
on the trajectory which is at a lookahead distance L away
from the vehicle. Then, the algorithm calculates the required
steering angle for the front axle based on the lookahead
distance using a formula (3). The formula used is illustrated
in Equation 1.1. In the equation, d represents the steering
angle, L represents the length between the two axles of the
car, a is the heading from the front axle to the waypoint and ld
is the distance to the waypoint.

(1.1)

The second main control algorithm used was the Stanley
control algorithm. This algorithm calculates the heading
error (the difference between the vehicle’s heading and the
heading of the current point on the trajectory) as well as a
term to correct for the cross track error. These two terms are
added together, and this value is set as the steering angle. If
the cross track error is low, the cross track error correcting
term will be small, and the control algorithm will adjust the
steering angle so that the vehicle follows the trajectory. If
the vehicle deviates from the trajectory, the cross track error
correcting term is larger, and the vehicle turns towards the
trajectory, reducing the cross track error (3, 6). Equation 1.2
illustrates the Stanley control algorithm. In this equation, k is
a gain parameter, e is the cross track error, v is the speed of
the vehicle, ϴ is the current heading of the vehicle, and ϴt is
the trajectory heading. A larger value for the k term means the
vehicle takes longer to return to the trajectory, and a smaller k
term means the vehicle returns to the trajectory faster.

(1.2)

The SPP controller was a combined Stanley and pure
pursuit controller which would operate based on the current
cross track error. If the cross track error was larger than
the set threshold, the vehicle used the pure pursuit control
algorithm to provide the steering angle. Otherwise, the
Stanley control algorithm was used to provide the steering
angle. The threshold value for the cross track error was set
by trying out different values and finding which value gave the
lowest average cross track error for the courses.

The SL controller was a modified Stanley controller with
lookahead turning: the controller uses the heading of a point

on the trajectory ahead of the vehicle’s current position to set
the current steering angle, using the same formula as the
Stanley control algorithm. This algorithm was chosen as for
longer vehicles, the larger distance between the axles would
make turning harder, and so by turning earlier the vehicle
would be able to turn easier.

For each of the control algorithms, gain parameters
and the cross track error threshold (for the SPP controller)
were chosen by running the simulation multiple times to find
parameters which gave the lowest average cross track error.
This is because analyzing the cross track error was easier
than analyzing the steering angle to gain insight on which
parameters were optimal.

APPENDICES
The code for the simulation is available at github.com/

heemogoblin/trajectory-following-simulation/tree/master.

ACKNOWLEDGMENTS
We would like to thank Professor Howie Choset of Carnegie

Mellon University for reading through our manuscript. We
would also like to thank Ilya Makarov of the National University
of Science and Technology for reading through our article
and providing useful and detailed points for improvement.
We would like to thank Artyom Boyarov’s parents for their
assistance during his study and research and for funding a
course on autonomous vehicles, which encouraged him to
undertake this research project.

Received: May 11, 2022
Accepted: July 13, 2022
Published: January 9, 2023

REFERENCES
1.	 Campbell, Mark, et al. “Autonomous Driving in Urban

Environments: Approaches, Lessons and Challenges.”
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol.
368, no. 1928, Oct. 2010, doi:10.1098/rsta.2010.0110.

2.	 Urmson, Chris, et al. “Autonomous Driving in Traffic:
Boss and the Urban Challenge.” AI magazine, vol. 30,
no. 2, Jun. 2009, doi:10.1609/aimag.v30i2.2238.

3.	 Paden, Brian, et al. “A Survey of Motion Planning and
Control Techniques for Self-Driving Urban Vehicles.”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,
Mar. 2016, doi:10.1109/tiv.2016.2578706.

4.	 Mouratidis, Kostas, and Victoria Cobeña Serrano.
“Autonomous Buses: Intentions to Use, Passenger
Experiences, and Suggestions for Improvement.”
Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 76, Jan. 2021, doi:10.1016/j.
trf.2020.12.007.

5.	 Bolzern, Paolo and Arturo Locatelli, "A comparative study
of different solutions to the path-tracking problem for an
articulated vehicle," Proceedings of the International

9 JANUARY 2023 | VOL 6 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

Conference on Control Applications, vol. 1, Sep. 2002,
doi:10.1109/CCA.2002.1040224.

6.	 Hoffmann, M. Gabriel et al. "Autonomous Automobile
Trajectory Tracking for Off-Road Driving: Controller
Design, Experimental Validation and Racing." 2007
American Control Conference, Jul. 2007, doi:10.1109/
ACC.2007.4282788.

7.	 Atsushi Sakai, et al. "PythonRobotics: a Python code
collection of robotics algorithms.", Sep. 2018.

8.	 Dosovitskiy, Alexey et al. “CARLA: An Open Urban
Driving Simulator”. Proceedings of the 1st Annual
Conference on Robot Learning, Nov. 2017.

9.	 El-Geneidy, Ahmed, and Nithya Vijayakumar. “The
Effects of Articulated Buses on Dwell and Running
Times.” Journal of Public Transportation, vol. 14, no. 3,
Sep. 2011, doi:10.5038/2375-0901.14.3.4.

10.	 Wikipedia contributors. “Speed Limits by Country.”
Wikipedia. en.wikipedia.org/wiki/Speed_limits_by_
country. Accessed 24 Feb. 2022.

11.	 “Maps - CARLA Simulator.” CARLA Documentation.
carla.readthedocs.io/en/latest/core_map/. Accessed 10
Mar. 2022.

Copyright: © 2023 Boyarov and Shannon. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

