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reach its destination, while the motion planner generates a 
trajectory, based on the map of the surroundings provided by 
the perception module, for the car to follow to reach the next 
waypoint that the mission planner has given (2). The motion 
planner also generates a velocity profile for the car to follow 
on the current segment of its route (3). The controller of the 
car follows the trajectory (lateral control) and speed profile 
(longitudinal control) for the section generated by the motion 
planner, by setting the steering angle and throttle input for the 
car respectively (3).

Multiple algorithms for lateral control have been developed, 
based on kinematic models of the vehicle.  Algorithms based 
on kinematic models use the bicycle model to represent the 
vehicle, where the car is represented as a two-wheeled body 
with the front wheel providing turning (3). Kinematic model-
based controllers are simple to implement, involve a low 
computation overhead and provide reasonable performance 
in fixed scenarios at a moderate speed, such as in urban 
settings where the speed usually does not exceed 30 miles 
per hour (3). Kinematic controllers were used by multiple 
vehicles in the DARPA Urban Challenge, including the 
winning vehicle, Stanley, which used the Stanley controller. 
Three vehicles used the pure pursuit kinematic controller in 
the same challenge (3). The Stanley controller aligns the front 
wheel of the vehicle with the trajectory while steering towards 
the trajectory, whereas the Pure Pursuit controller picks a 
point on the trajectory a set distance from the vehicle and 
sets the steering angle to move to that point (3).

Existing research is focused on comparing the 
effectiveness of such algorithms when controlling conventional 
cars. Not much research focuses on autonomous buses, but 
they can be more beneficial for the environment and could 
improve public transport. When surveyed, people show 
positive attitudes towards using autonomous buses (4). If full 
autonomous capability is to be achieved, especially in urban 
environments, vehicles such as buses or trucks also need to 
be made autonomous. The motion of a bus is different from 
a car, and so existing lateral control algorithms may be less 
effective at navigating longer buses than small cars. For 
example, according to the bicycle kinematic model of the 
vehicle, the angular velocity of a bus is lower because of 
the greater length between axles, making turning harder (3). 
Investigating the performance of existing kinematic control 
algorithms on longer vehicles would give valuable insights 
on how the algorithms could be adjusted to cope with longer 
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SUMMARY
Existing research on autonomous vehicle control is 
largely focused on how control algorithms perform 
on cars; long vehicles or buses have not been 
significantly investigated. Existing studies indicate 
that people display positive attitudes to using 
autonomous buses, indicating the value of researching 
control algorithms for autonomous buses. To provide 
insight on the performance of control algorithms on 
autonomous buses, we compared multiple lateral 
control algorithms on how well they maneuver a 
long vehicle around three courses resembling urban 
environments. We compared the Stanley and pure 
pursuit control algorithms and two new control 
algorithms which were improved versions of the 
Stanley and pure pursuit controllers. We compared 
the control algorithms in a kinematic simulation which 
recorded the steering angle and cross track error from 
the front axle for each controller driving the vehicle 
at 50 km/h around the course. We hypothesized that 
the Stanley control algorithm would perform the best 
due to its success in navigating existing vehicles. The 
Stanley control algorithm had a low cross track error, 
but it had a large steering angle and large changes 
in steering angle. The pure pursuit controller had 
smoother changes in steering angle, but the cross 
track error was larger than the Stanley controller. Our 
results suggest that none of the algorithms we tested 
were optimal, and that an algorithm which can utilize 
the ability of the Stanley controller to maintain a low 
cross track error while also keeping a low steering 
angle change will perform the best for long vehicles.

INTRODUCTION
Self-driving cars have been developing at an increasing 

rate over the past few decades, starting with basic highway 
driving in the 1980s to almost full autonomous driving 
capability showcased in the Defense Advanced Research 
Projects Agency (DARPA) Grand Challenges of the 2000s, 
where multiple teams from industry and academia developed 
vehicles to drive autonomously around courses in the desert 
and urban areas (1). Autonomous vehicles feature software 
handling perception, navigation, and vehicle control (2). 
The perception module uses sensor data to produce a map 
of the environment surrounding the vehicle (2). Navigation 
modules consist of mission and motion planners (2). The 
mission planner finds the route the car should take to 
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lengths (such as how gain parameters could be adjusted) or 
whether new algorithms need to be designed. Some research 
has been conducted into various control algorithms for 
articulated vehicles (5), but for non-articulated vehicles of a 
long length the performance of control algorithms has not yet 
been discussed.

Therefore, the aim of our investigation was to compare the 
performance of various lateral control algorithms when used 
to control a long vehicle on a trajectory similar to one in an 
urban environment. The trajectories used in our investigation 
would involve features usually present on roads in urban 
environments, such as frequent turns and roundabouts. We 
compared the Stanley and pure pursuit control algorithms, as 
well as two algorithms designed by ourselves based on the 
Stanley and pure pursuit controllers which aim to counteract 
their shortcomings. The first new algorithm designed, referred 
to as Stanley with Lookahead (SL), was a modified Stanley 
controller which used the heading of a point on the trajectory 
in front of the vehicle instead of the heading of the point on the 
trajectory closest to the vehicle. The second new algorithm, 
referred to as Hybrid Stanley and pure pursuit (SPP), either 
used pure pursuit control or Stanley control based on the 
current cross track error. If the cross track error was above 
a certain threshold, the vehicle used Pure Pursuit control to 
get back to the trajectory. Otherwise, Stanley control is used 
to ensure the vehicle stays aligned with the trajectory. We 
hypothesized that the Stanley control algorithm would be able 
to achieve smoother turning and a lower cross track error than 
the other algorithms and would thus prove to be a better control 
algorithm. In the 2005 DARPA Urban challenge, the winning 
vehicle uses the Stanley control algorithm, and the vehicle 
did not hit any obstacles (6). Furthermore, the authors of the 

paper on the Stanley control algorithm highlight the ability of 
the controller to operate with a low cross track error (6). In 
our investigation, we developed a simulation of the bicycle 
kinematic model of a vehicle which simulated the motion of a 
vehicle responding to changes in steering angle. The steering 
angle was set based on the current control algorithm being 
tested. We implemented all of the controllers tested based 
on the available literature and the PythonRobotics GitHub 
repository (3, 7). To compare each algorithm’s performance, 
we measured the average cross track error (measured from 
the car’s front axle) as well as the steering angle over time. 
The cross track error of the vehicle is defined as the distance 
from the vehicle’s rear axle or the front axle to the nearest 
point on the trajectory (3). In our experiment, we measured 
the cross track error from the front axle of the car.

The major conclusion drawn from our research was that no 
control algorithm was able to provide a low cross track error 
as well as smooth steering, indicating that an optimal control 
algorithm is yet to be developed, or other controllers could 
perform better. Therefore, my conclusion did not support my 
hypothesis, as the Stanley control algorithm did not have 
better steering than the pure pursuit algorithm or the SL 
and SPP algorithms. My investigation could be extended to 
environments similar to urban ones, such as in a warehouse 
where robots may have to transport goods between stations 
along fixed paths, or in an airport where transit buses and 
other vehicles have designated roads for them to travel on.

RESULTS
To compare the cross track error and steering angle 

over time for the control algorithms on the test courses, we 
developed a simulation which used the bicycle kinematic 

Figure 1: A diagram of a two-axled vehicle illustrating the cross track error and steering angle. The vehicle is represented as a solid 
body with two axles with wheels. The steering angle is the angle between the heading of the vehicle and the heading of the front axle. The 
cross track error is the distance from the center of the front axle to the closest point on the trajectory. The values for the cross track error and 
steering angle were recorded every 0.1 seconds during the simulation, and these values were used as experimental data in our investigation 
to evaluate the performance of the control algorithms. The figure was produced using Microsoft Word.
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Figure 2: Course maps of the three courses used for the simulation. Figure 2a is the straight track course. Figure 2b is the three-quarter 
turn course. Figure 2c is the roundabout course. Units are in meters, with the values on the axis indicating the position of the point on the 
trajectory given as a coordinate. The origin, point (0,0), was chosen arbitrarily for the courses. The bus is shown as a red rectangle at the start 
of the course for scale. The figures were produced using the Python programming language and Matplotlib library.

Figure 3: Steering angle of vehicle at 50 km/h on the straight track course using different controllers. Line graph showing steering 
angle of front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley 
controller (orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow). The results 
for the Stanley controller were identical to the SPP controller, hence the orange line for the Stanley controller is not visible. The experiment 
was performed once.
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model to simulate a bus travelling at 50 km/h while also 
responding to changes in steering angle given by the control 
algorithm being tested. In the simulation, we sampled the 
vehicle’s cross track error from the front axle and the steering 
angle every 0.1 seconds. We chose to measure the cross track 
error from the front axle of the car as the front axle guides 
the vehicle and having the front axle of the car close to the 
trajectory ensures that the car is driving towards the trajectory 
(6). In existing control algorithm reports, the cross track error 
was also measured from the front axle when evaluating the 
control algorithm’s performance (6). Figure 1 shows the cross 
track error from the front axle. A lower average cross track 
error indicates that the controller successfully follows the 
trajectory and remains close to the trajectory. The steering 
angle was measured for two reasons. First, large turns will 
cause a vehicle to risk overturning, where a vehicle turns too 
much and tips over (2). Second, having sudden changes in 

steering angle will cause the vehicle to jolt, thereby reducing 
passenger comfort (2). Having a lower steering angle with 
smoother changes will provide a more comfortable and safer 
experience for passengers in the vehicle. After results were 
collected in the simulation, they were processed and analyzed 
in Microsoft Excel.

The first course (Figure 2a) featured two sections of 
straight track connected with two turns. The pure pursuit 
controller offered low steering angles and smooth turns, 
whereas the Stanley, SL and SPP controllers had a larger 
steering angle and more sudden changes in steering angle 
compared to the pure pursuit controller (Figure 3). However, 
the Stanley and SPP controllers had a much lower average 
cross track error than the pure pursuit and SL controllers 
(Table 1).

In the second course (Figure 2b), the vehicle took a 
three-quarter turn around a roundabout with a diameter of 

Table 1: Average cross track error of vehicle at 50 km/h on each course. Table showing the average cross track error in meters of vehicle 
on each course for each of the control algorithms tested (pure pursuit, Stanley, Stanley with lookahead, and hybrid Stanley with pure pursuit). 
Cross track error was recorded as the distance to the nearest point on the trajectory from the front axle and summed every 0.1 seconds. At 
the end of the simulation, the total cross track error was divided by the time taken to calculate the average cross track error. The experiment 
was performed once for each course.

Figure 4: Steering of vehicle at 50 km/h on the three-quarter turn course using different controllers. Line graph showing steering 
angle of front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley 
controller (orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow). The experiment 
was performed once.
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20 meters. The pure pursuit controller had smoother steering 
than the other controllers (Figure 4). The Stanley controller 
had sudden changes in steering angle and a high steering 
angle. The SL and SPP controllers had more sudden changes 
in steering angle. However, they did not have as high of a 
steering angle as the Stanley controller. The Stanley and the 
SPP controllers had the lowest average cross track error, and 
the pure pursuit and SL controllers had the highest average 
cross track error (Table 1).

The last course (Figure 2c) involved a vehicle traversing a 
roundabout fully. Similar to the previous experiments, the pure 
pursuit controller had smooth steering (Figure 5). However, 
at times it had a large steering angle. The other controllers 
all had large steering angles, as well as sudden changes in 
steering angle. The Stanley controller had the lowest cross 
track error, and the SPP had a cross track error which was 
not significantly higher (Table 1). The SL and pure pursuit 
controller had the largest cross track error.

DISCUSSION
Each of the experiments presented a similar pattern 

of results: the pure pursuit controller had smooth steering 
and a low steering angle, and the Stanley controller and 
SPP controller had the lowest cross track error. For some 
experiments the cross track error of the other controllers 
compared did not differ greatly from the cross track error of 
the Stanley controller, namely the three-quarter turn on the 
roundabout course. However, in the experiments, the Stanley, 
SPP and SL controllers had sudden changes in steering angle 
as well as a large steering angle. The pure pursuit controller 
was unable to steer round the turns without having a large 
cross track error. For the Stanley controller and the two 
new controllers, the sharp steering angle resulted from the 

heading of the trajectory changing suddenly, as the Stanley 
and new controllers use the current heading of the trajectory 
to set the steering angle.

The simulation was quite accurate as it was not affected 
by external factors. The steering angle was stored as a 
variable in the simulation, meaning there is no measurement 
error in recording the steering angle. When the experiments 
were repeated, the results obtained were identical. However, 
the simulation had the speed fixed to 50 km/h, but in an actual 
scenario, the speed of the vehicle will change, especially 
while turning. The speed will decrease to help a vehicle round 
the turn. In future studies, a more realistic simulator can be 
employed to provide more realistic results. For example, the 
CARLA simulator, an open-source vehicle simulator, features 
advanced vehicle physics and so the effect of turning on the 
speed of the vehicle can be observed (8).

The results therefore indicate that no single controller 
offers optimal control of a vehicle, thus not providing support to 
our hypothesis that the Stanley controller offers good steering 
and a low cross track error. The Stanley controller offers a 
low cross track error but at the cost of sudden changes in 
steering, which would be uncomfortable for passengers or 
goods. The pure pursuit controller had smoother turns, but 
it had a large cross track error. The SL and SPP controllers 
had a lower cross track error than the pure pursuit controller, 
but they had poor steering. A controller which can avoid the 
large change in steering angle while having a low cross track 
error is a possible next step for development. A possible 
implementation may be a modified Stanley controller which 
outputs a value for the rate of change of steering angle, which 
is clamped within a margin, so that the vehicle does not 
change the steering angle suddenly.

Apart from looking for an improved kinematic lateral 

Figure 5: Steering of vehicle at 50 km/h on the roundabout course using different controllers. Line graph showing steering angle of 
front axle every 0.1 seconds. Steering angle (in radians) was recorded from the simulation with pure pursuit controller (blue), Stanley controller 
(orange), Stanley with lookahead (SL) controller (gray), and hybrid Stanley and pure pursuit (SPP) controller (yellow).  The experiment was 
performed once.
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control algorithm, the possible next step may be to compare 
predictive algorithms for following a trajectory, which use 
more complex algorithms to find the steering angle and 
speed to follow individual segments of the trajectory (3). 
Predictive algorithms may offer improved performance than 
the kinematic algorithms, albeit at a higher computational 
cost. Predictive algorithms can also adjust the vehicle’s 
speed while following the trajectory, and so vehicles may 
reduce their speed while going round a corner. Articulated 
vehicles may also be investigated. Articulated trucks are very 
common, and articulated buses are used around the world. 
Articulated buses offer higher passenger capacity and faster 
transportation and are already used in many cities (9).

Overall, in contrast to initial hypothesis, our research 
showed that no control algorithm offered optimal performance. 
Each controller either had a low cross track error but high 
steering angles, or smooth steering with a high cross track 
error. This indicates that none of the kinematic control 
algorithms we tested provides optimal results, and so an 
algorithm which addresses the shortcomings of the Stanley 
and pure pursuit controllers or a predictive algorithm such as 
model predictive control may produce better results.

MATERIALS AND METHODS
Overview of the Simulation and Experiment

A kinematic simulation of a two-axled vehicle representing 
the bus was developed in the Python programming language 
with the Matplotlib library providing a graphical frontend. The 
kinematic simulation used was the bicycle model of a two-
axled vehicle, where the front axle of the vehicle provides 
turning (Figure 1) (3). The bus was 10 m long in the simulation, 
which is a similar length to existing buses. Each control 
algorithm was implemented as a function which returned the 
required steering angle at each iteration of the simulation. 
The simulation was run at a fixed time step of 0.1 seconds. 
At each iteration, the function for the control algorithm being 
tested was invoked to calculate the steering angle of the 
vehicle for the current iteration. The vehicle’s position was 
then updated based on the speed and steering angle using 
the formulas provided for the bicycle kinematic model (3). In 
the simulation, the vehicle’s cross track error and steering 
angle were sampled every iteration. A flowchart indicating 
how the simulation worked is provided (Figure 6). Control 
algorithms were implemented using the available literature as 
well as the PythonRobotics GitHub repository (3, 7). In the 
simulation, the pure pursuit and Stanley control algorithms 
produced a steering angle using the formulas available from 
the literature. The SPP controller and the SL controller also 
used the Stanley and pure pursuit functions as part of their 
processing. We set the speed in the simulation to 50 km/h, 
roughly 30 mph, as this is the speed limit in urban areas in 
many countries around the world (10).

Each of the simulated courses were chosen to represent a 
situation a vehicle might encounter in an urban environment. 
The CARLA Simulator, an industry-grade simulator for 

autonomous vehicle research, provides multiple maps which 
are employed to simulate town environments (11). Namely, 
these maps had the following distinct features: straight 
sections, right-angled turns, and roundabouts (11). Therefore, 
the courses we chose involved traversing two right-angled 
turns, traversing a roundabout fully and traversing three-
quarters of the way around a roundabout. The course maps 
with the bus presented for scale are provided (Figure 2). 
Trajectories for the simulation were made up of straight 
segments and curved line segments; points on the trajectories 
were generated using linear interpolations and geometric 
Slerps.

While the simulation was running, values for the steering 
angle and cross track error (measured as the distance from 
the front axle to the nearest waypoint, illustrated in Figure 1) 
were recorded and then stored in a csv file at the end of the 
simulation. These values were then processed and analyzed 

Figure 6: A flowchart of the simulation used in the experiment. 
Each control algorithm was defined as a function which was called 
during every iteration of the simulation. The function would return 
a value for the steering angle for the vehicle. The vehicle position 
was updated using kinematic equations for the motion of the vehicle 
based on the speed and steering angle. The cross track error was 
then calculated by finding the Euclidean distance from the center 
of the front axle to the closest point on the trajectory and then 
recorded. The steering angle, which was stored as a variable, was 
also recorded. After updating the position, if the vehicle was within 
1 meter of the end goal, the simulation finished. The figure was 
produced using Microsoft PowerPoint.
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in Excel. Each control algorithm was tested on each course 
once. The experiment was not repeated as the results 
produced by the simulation were identical. The average 
cross track error was calculated by summing the cross track 
error at each iteration in the simulation and dividing the 
total cross track error by the number of samples taken. The 
code is publicly available; the GitHub page is provided in the 
appendix.

Control Algorithms Tested
The first control algorithm tested was the pure pursuit 

control algorithm. At each step, the algorithm finds a point 
on the trajectory which is at a lookahead distance L away 
from the vehicle. Then, the algorithm calculates the required 
steering angle for the front axle based on the lookahead 
distance using a formula (3). The formula used is illustrated 
in Equation 1.1. In the equation, d represents the steering 
angle, L represents the length between the two axles of the 
car, a is the heading from the front axle to the waypoint and ld 
is the distance to the waypoint.

(1.1)

The second main control algorithm used was the Stanley 
control algorithm. This algorithm calculates the heading 
error (the difference between the vehicle’s heading and the 
heading of the current point on the trajectory) as well as a 
term to correct for the cross track error. These two terms are 
added together, and this value is set as the steering angle. If 
the cross track error is low, the cross track error correcting 
term will be small, and the control algorithm will adjust the 
steering angle so that the vehicle follows the trajectory. If 
the vehicle deviates from the trajectory, the cross track error 
correcting term is larger, and the vehicle turns towards the 
trajectory, reducing the cross track error (3, 6). Equation 1.2 
illustrates the Stanley control algorithm. In this equation, k is 
a gain parameter, e is the cross track error, v is the speed of 
the vehicle, ϴ is the current heading of the vehicle, and ϴt is 
the trajectory heading. A larger value for the k term means the 
vehicle takes longer to return to the trajectory, and a smaller k 
term means the vehicle returns to the trajectory faster.

(1.2)

The SPP controller was a combined Stanley and pure 
pursuit controller which would operate based on the current 
cross track error. If the cross track error was larger than 
the set threshold, the vehicle used the pure pursuit control 
algorithm to provide the steering angle. Otherwise, the 
Stanley control algorithm was used to provide the steering 
angle. The threshold value for the cross track error was set 
by trying out different values and finding which value gave the 
lowest average cross track error for the courses. 

The SL controller was a modified Stanley controller with 
lookahead turning: the controller uses the heading of a point 

on the trajectory ahead of the vehicle’s current position to set 
the current steering angle, using the same formula as the 
Stanley control algorithm. This algorithm was chosen as for 
longer vehicles, the larger distance between the axles would 
make turning harder, and so by turning earlier the vehicle 
would be able to turn easier.

For each of the control algorithms, gain parameters 
and the cross track error threshold (for the SPP controller) 
were chosen by running the simulation multiple times to find 
parameters which gave the lowest average cross track error. 
This is because analyzing the cross track error was easier 
than analyzing the steering angle to gain insight on which 
parameters were optimal.

APPENDICES
The code for the simulation is available at github.com/

heemogoblin/trajectory-following-simulation/tree/master. 
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