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be performed on brains of living people. Older people who 
are having amyloid-β accumulation but no memory difficulties 
do not visit clinics for memory impairments. This period with 
amyloid-β accumulation but without memory impairments 
is called the “preclinical stage” of AD (5). At the time when 
people have memory impairment and visit clinics for their 
memory problems, patients are in the “clinical stage” of AD. 
However, neurons and brain circuits are severely damaged 
already by the clinical stage, and treatment will be difficult 
because neurons do not regenerate (5). Thus, for addressing 
the clinical burden of AD, it is critical to diagnose amyloid-β 
accumulation at the preclinical stage before neuronal death 
occurs.

Electroencephalography (EEG) (6) is an effective way to 
record brain activity without damaging brain cells by placing 
electrodes on the scalp. This test detects electrical charges 
from brain activities. Using frequencies, the waves of EEG can 
be categorized into different bands. These bands include theta 
(5–7 Hz), beta (16–30 Hz), and gamma (41–80 Hz) waves. It 
was previously reported that old AD mice (10 months of age) 
show distinct patterns of EEG powers compared to healthy 
old mice (6). These findings suggest that EEG data could be 
useful for identifying AD in early stages, if we can predict the 
existence of amyloid-β from EEG data. For this prediction, 
we hypothesized if machine learning can provide a high 
predictive power. Machine learning technology has advanced 
dramatically over the past few decades, and it has become 
a common tool in scientific research. Machine learning is an 
artificial intelligence algorithm that learns through training. It 
can detect subtle differences, and after training with existing 
data with known answers, machine learning classifiers can 
predict answers for incoming data. Many different classifiers 
are available, such as the support vector machine and the 
Naïve Bayes classifier, and each has an optimal type of data 
for usage (7). Machine learning can provide better prediction 
performance than traditional statistical methods. We thus 
hypothesized that amyloid-β accumulation in young mice 
could be predicted using EEG data and machine learning. 
We tested this hypothesis using published EEG data obtained 
from healthy mice and AD mice (8).  Our results showed that 
Gaussian Naïve Bayes classifier can predict the existence of 
amyloid-β at 81% accuracy from EEG data, suggesting that 
this method may be useful for early diagnosis of AD patients.

Prediction of preclinical Aβ deposit in Alzheimer’s 
disease mice using EEG and machine learning

SUMMARY
Alzheimer’s disease (AD) is a common disease 
affecting 6 million people in the U.S., but no cure 
exists. To create therapy for AD, it is critical to detect 
amyloid-β protein in the brain at the early stage of 
AD because the accumulation of amyloid-β over 
20 years is believed to cause memory impairment. 
However, it is difficult to examine amyloid-β in 
patients’ brains. The development of a simple method 
to predict the presence of amyloid-β without harming 
patients would be helpful for clinical applications. 
Electroencephalography (EEG) is a testing method 
that records brain activity using electrodes attached 
to the scalp without harming the brain. In this study, 
we hypothesized that we could accurately predict the 
presence of amyloid-β using EEG data and machine 
learning. To test this, we analyzed published EEG data 
recorded from healthy mice and AD mice. Machine 
classifiers were trained using EEGs of old mice with 
and without amyloid-β. We then tested if the best 
trained machine classifier (Gaussian Naïve Bayes 
(GNB) classifier) could predict amyloid-β in young 
mice from their EEG data. Results showed that GNB 
classifier can predict if a given mouse has amyloid-β 
or not at 81% accuracy when theta waves were used 
for classifier training. The accuracy of the classifier 
was at chance level when beta or gamma waves were 
used. These results indicate that amyloid-β presence 
can be predicted at high accuracy using EEG and 
machine learning and suggest that this method may 
be useful for early diagnosis of AD patients.

INTRODUCTION
Today in the U.S., one in nine people 65 years and older 

have Alzheimer’s disease (AD) (1). However, there is no cure 
for AD currently available. One of the leading theories for the 
cause of AD is that amyloid precursor protein creates amyloid-β 
protein that accumulates in the brain and impairs neuronal 
functions (2). Another protein, tau, forms neurofibrillary 
tangles, which eventually kill neurons (3). In AD patients, the 
deposition of amyloid-β starts around age 60 and gradually 
disrupts brain function until memory impairment emerges 
around age 80 (4). One of the major problems in creating a 
cure or therapy for AD is the fact that it is extremely difficult to 
diagnose patients in early stages.  Brain sections are needed 
to examine the existence of amyloid-β, but biopsies cannot 
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RESULTS
Training of machine classifier using EEG from old mice 

We used data from a previously published paper was to 
perform this experiment (8). The dataset contains EEG data 
obtained from four groups of mice: healthy young mice (N=5 
mice), healthy old mice (N=10 mice), AD young mice (N=6 
mice), and AD old mice (N=10 mice). We defined young mice 
as those between 3 and 5 months of age, and old mice as those 
between 7 and 12 months of age. We used amyloid precursor 
protein knock-in (APP-KI) mice as AD mice (4).  APP-KI are 
genetically-modified mice having mutated amyloid precursor 
protein (APP) that produces amyloid-β accumulation in the 
brain. On the other hand, healthy mice do not have mutated 
APP and thus do not accumulate amyloid-β. A previous study 
showed that young APP-KI mice were at the preclinical AD 
stage where brains have amyloid-β accumulation, but these 
animals did not exhibit signs of memory impairment (6). Old 
APP-KI mice are at the clinical AD stage with both amyloid-β 

accumulation and memory impairment (6).
To leverage the EEG data from both preclinical and clinical 

stages, we designed our own analytical strategy (Figure 1). 
First, we trained machine classifiers using EEG data from old 
healthy and old AD mice at the clinical stage (Figure 1A). 
Next, we used these trained machine classifiers to predict 
amyloid-β deposition from EEG data of young healthy mice 
and young AD mice at the preclinical stage (Figure 1B). 
Finally, we validated the predictions by comparing them to 
amyloid-β accumulation results in individual mice that were 

Figure 1: Analytical procedure and workflow used in this study. 
A: Machine classifiers were trained using EEG data from healthy old 
and AD old mice groups. B: EEG data from healthy young and AD 
young were used as inputs to the classifier for prediction, without 
telling which group each data was derived from. The classifier 
returned predicted output (healthy or AD) for each mouse. C: The 
output from the classifier was tested against the truth. The output 
was validated with the correct answer, which is the existence of 
amyloid-β in the brain.

Figure 2: Training of machine classifiers using EEG from old 
mice. A: Power spectrum of EEG data recorded from healthy old 
mice (blue, N=10 mice) and AD old mice (red, N=10 mice). Raw EEG 
powers were summed across 1–100 Hz bins, and powers at each bin 
were divided by the summed power for normalization. Powers are 
shown in mean (bold lines) ± standard error (transparent lines). B: 
Prediction accuracy of different machine classifiers, cross-validated 
using EEG of old mice. Gaussian Naïve Bayes classifier provided the 
highest accuracy. *=p<0.05, ANOVA followed post-hoc Bonferroni 
test. N=10 cross-validation samples.
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examined histologically and reported in the previous paper 
(Figure 1C) (6). We expected that differences in EEG data 
would be larger at the clinical stage than the preclinical stage, 
and thus we used EEG from the clinical stages for training 
machine classifiers. Prediction at the preclinical stage has 
high clinical relevance.

We pre-processed EEG data using power spectrum 
analysis, and calculated power spectrum of the EEG data 
from each mouse at 1–100 Hz bins (Figure 2A). The mean 
powers of three representative wave bands were calculated: 
theta (5¬–7 Hz), beta (16–30 Hz), and gamma (41–80 Hz) 
bands. This procedure provided three measures (theta, beta, 
and gamma powers) from each mouse. Theta and beta bands 
are thought to be involved in the communication between 
distant brain regions, whereas gamma bands are shown to 
have synchronizing neurons in each brain region (6). We 
tested each of these bands in our analyses.

We then trained machine classifiers by providing theta, 
beta and gamma powers and animal type (“healthy old” or “AD 
old”). When provided with these data, the machine classifiers 
determined optimized parameters for their implemented 
functions (i.e. trained) to provide the best classification for 
the provided data. The same data from healthy old mice and 
AD old mice was run through the trained machine classifier 
using a 10-fold cross-validation method. We initially tested 
five representative machine classifiers available in MATLAB 
software. Out of the five different machine classifiers that 
were trained, the Gaussian Naïve Bayes classifier proved to 
be the most accurate with 88.0 ± 2.4% accuracy. The other 
classifiers, Fine Tree, Linear SVM, Cubic KNN, Medium 
Neural Network had accuracies at 78.5 ± 1.3%, 81.0 ± 1.8%, 
77.5 ± 2.0%, and 79.0 ± 2.8%, respectively. The Gaussian 
Naïve Bayes Classifier had a significantly higher accuracy 
than the three other classifiers (p<0.05, post-hoc Bonferroni 
test after ANOVA).

Gaussian Naïve Bayes classifier predicted amyloid-β in 
young mice with high accuracy 

We then used the Gaussian Naïve Bayes Classifier, 
trained with EEG data from healthy old mice and AD old 
mice, to examine the prediction accuracy from EEG of healthy 
young mice and AD young mice as inputs, without telling the 
classifier which mouse type each EEG was recorded from. 
We calculated prediction accuracies by validating with the 
correct answers, which were the mouse type each EEG was 
recorded from (healthy young or AD young). We repeated 
this procedure by using three distinct frequency bands from 
the EEG data (theta, beta, and gamma) to obtain three 
separate prediction accuracies (Figure 3). Results show that 
the classifier was able to predict AD in young mice with an 
accuracy of 80.9 ± 0.03% using theta wave data. However, 
beta and gamma wave data provided prediction accuracies 
at the chance level of 48.1 ± 0.02% and 55.2 ± 0.03%, 
respectively. Theta wave EEG data provided the higher 
prediction accuracy compared to other waves (p<0.001, post-

hoc Bonferroni test after ANOVA). These results indicate that, 
when theta waves were used, the Gaussian Naïve Bayes 
classifier predicted the existence of amyloid-β accumulation 
in preclinical stage brains with an accuracy as high as 81%.

DISCUSSION
In this study, we showed that the existence of amyloid-β 

in AD mice can be predicted in preclinical stage brains at 

Figure 3: Gaussian Naïve Bayes classifier predicted amyloid-β 
in young mice with high accuracy. A: An example EEG power 
spectrum recorded from young mice. Theta, beta, and gamma 
powers were independently used for inputs to the Gaussian Naïve 
Bayes classifier trained with EEG of old mice. B: Prediction accuracy 
of Gaussian Naïve Bayes classifier using EEG of young mice. Theta 
wave data provided the highest accuracy. *=p<0.05, ANOVA followed 
by post-hoc Bonferroni test. N=10 bootstrap repetitions.
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high accuracy using EEG and machine learning. A similar 
study using machine learning and EEG from old AD patients 
recently reported 85% accuracy, but preclinical stage patients 
were not tested (9). By contrast, our results show that machine 
classifiers can provide up to 81% accuracy even for preclinical 
AD mice, when machine classifiers were trained with data 
from clinical stage AD mice. Early diagnosis of amyloid-β is 
critical; therefore our results may show promise for preclinical 
AD patients.

The selection of classifiers and EEG wave bands used in 
this study may not be the best for human EEG data and should 
be tested in future studies. In this study, the Gaussian Naïve 
Bayes classifier performed the best out of the classifiers 
tested, although other classifiers may also provide good 
prediction for human EEG data. As for the wave bands, the 
theta band (5–7 Hz) yielded 81% accuracy, whereas the beta 
band (16–30 Hz) and the gamma band (41–80Hz) yielded 
48% and 55% accuracies, respectively. This may be because 
theta waves show the earliest change in power at a young 
age. The increase of theta oscillation power observed in AD 
mice in our study is consistent with a study showing increased 
theta oscillation power in AD patients with mild cognitive 
impairment (10). This suggests an importance of theta band 
for early detection. Theta oscillations are thought to be a brain 
mechanism that coordinates activity of various brain regions, 
and the loss of theta oscillations in AD may result in cognitive 
impairment (6). However, this should be carefully tested in 
human data in future studies.

The next step would be to perform the same experiment 
on AD patients during both preclinical and clinical stages. 
If this method could predict amyloid-β deposition at a high 
accuracy in the future, it could be used for diagnosis well 
before the progression of AD within patients. In the future, 
people could receive the option to record their EEG and 
monitor potential risk of carrying amyloid-β deposition, along 
with other medical checks. Together with a future cure or form 
of therapy, this approach provides a potential therapeutic 
benefit for enhancing management and care toward AD 
patients.

MATERIALS AND METHODS
Pre-processing of EEG data

EEG data, recorded from Healthy mice and AD mice for 
approximately one hour, has been published previously (6). 
All procedures were performed using MATLAB software 
(MathWorks). EEG data was separated into four groups 
according to the age of mice (young [3–5 months old] or old 
[10 months old]) and existence of amyloid-β (healthy or AD) 
examined after EEG recording (Jun et al., 2020): healthy old 
(N=10 mice), AD old (N=10 mice), healthy young (N=5 mice), 
and AD young mice (N=6 mice). Power spectrum analysis 
was performed for EEG data from each mouse to obtain 
power spectrum (dB) for each frequency (1–100 Hz, in a 1 
Hz bin) using MATLAB software. Mean powers of theta (5¬–7 
Hz), beta (16–30 Hz), and gamma (41–80 Hz) bands were 

calculated. This procedure provided three measures (power 
spectrum data for theta, beta, and gamma bands) for each 
mouse.

Machine Learning Procedure
Step 1: Machine learning classifiers were trained using 

EEG data from Healthy old and AD old mice groups. Five 
representative machine classifiers were trained: Fine Tree 
Classifier, Gaussian Naïve Bayes Classifier, Linear Support 
Vector Machine, Cubic k-Nearest Neighbor Classifier, 
and Medium Neural Network Classifier. The performance 
of classifiers was tested using a 10-fold cross-validation 
procedure: Data was randomly divided 10 equal-sized 
groups, and then 9 of these groups are used for training and 
1 of these groups are used for testing. This procedure was 
repeated 10 times.

Step 2: EEG data from healthy young and AD young 
mice were then tested. Power spectrum data in theta, beta 
and gamma bands from healthy young and AD young EEG 
was used as inputs for the previously trained Gaussian 
Naïve Bayes classifier, without telling which group each data 
was derived from. The classifier returned predicted output 
(“healthy” or “AD”) for each mouse. 

Step 3: The output from the classifier was tested. The 
output was validated with the correct answer, whether the 
data came from a healthy old mouse without amyloid-β, or 
AD mouse with amyloid-β deposition examined histologically 
in the previous paper (6). Steps 2–3 were repeated for N=10 
trials using the bootstrapping method (11 random samples 
were chosen from N=5 healthy young mice and N=6 AD 
young mice by allowing multiple sampling from same animal, 
repeated 10 times). Accuracy of machine prediction was 
statistically examined using analysis of variance (ANOVA) 
and Bonferroni post-hoc test.
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