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with the highest SEP (3). This demonstrated a discrepancy 
in the values that are being presented which can create 
uncertainty in the relationship between socioeconomic 
position and disease prevalence.
	 Studies in the United Kingdom and the United States 
of America have also related COVID-19 to socioeconomic 
status through data collection and surveys. In the UK, a study
analyzed the association between a lifestyle score, 
socioeconomic status, and COVID-19 outcomes within the 
UK Biobank cohort (a large prospective cohort of 502,536 
participants aged 37–73 years) (4). They found that in fully 
adjusted models, there was evidence of nonlinear association 
of socioeconomic status with COVID-19 mortality, but a 
lack of association with severe COVID-19 (4). An analysis 
performed by another UK-based research group pointed to 
a multitude of factors that increase the exposure of people of 
low SEP to disease—overcrowded housing, less work-from-
home opportunities, unstable income, and limited access to 
healthcare are overarching reasons behind this clear divide 
(5). A study in the United States, analyzing how COVID-19 
disproportionately impacts minorities and individuals of 
lower SES showed how compared to non-Hispanic white 
individuals black, Asian/Pacific Islander, and Hispanic people 
had a significantly higher likelihood of being unable to work, 
and those with the lowest income group (≤$25,000) had the 
most serious impact from COVID-19 (6). 
	 We noticed that although studies like that in Vietnam (2) 
and the United States (6) demonstrate a negative association 
with SEP and disease prevalence, discrepancies arise in 
studies such as that in Kenya (3), where a positive association 
was found, and that in the UK, where there was a lack of 
association between SEP and severe COVID-19 (4).
	 Our study related SEP with rates of COVID-19 through an 
agent-based modeling to represent the near-ideal spread of 
disease (accounting for no public health restrictions or other
external factors) and the iteration through data to determine 
the correlation between the two factors. In addition, we also 
analyzed the relationship between socioeconomic factors and 
vaccination rates to account for this third factor. In doing so, 
our study surpassed analyzing just SEP, but also accounts for 
11 individual socioeconomic variables in addition to providing 
a population analysis through agent-based modeling.
	 We hypothesized that relating the COVID-19 infection 
rate to economic factors would reveal a negative relationship 
between the two, because an increase in socioeconomic 
position increases access to hygiene resources and less 
congested living. Meanwhile, we hypothesized relating 
vaccination rates to economic factors would show a 
positive relationship between the two, as an increase in 
socioeconomic position increases transportation access 
to vaccination centers and the concentration of vaccination 
centers. Our results revealed that socioeconomic variables 
such as gross domestic product (GDP) and net taxable 
assessed value caused a difference in simulated and actual 
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SUMMARY
In the COVID-19 pandemic, the world saw countless 
communities negatively impacted, and low-income 
communities were the most affected by the disease 
(29). In this study, we aimed to investigate and 
identify the relationship between key socioeconomic 
factors, COVID-19 infection rate, and vaccination, 
with hopes to apply this research to support low-
income communities that are at a higher risk of 
infection. We hypothesized that there is a negative 
correlation between COVID-19 infection rate and 
positive economic factors such as per-capita GDP, 
and that there is a positive correlation between 
vaccination rates and similar factors. In our model for 
both infection rate and vaccination, we observed that 
although a negative relationship for some factors did
exist, not all economic values had an observable 
correlation between the two . These findings could 
be used to further identify socioeconomic factors 
with the highest impact on disease infection rate, and 
therefore redirect public and private funding to solve
underlying issues that allow the spread of disease.

INTRODUCTION
	 The COVID-19 pandemic demonstrated how people in 
lower socioeconomic positions (SEPs) experience disease 
more dramatically than those that are in higher socioeconomic 
standings. Many people in lower SEPs must make sacrifices 
and risk their and their families’ health in order to maintain a 
level of economic security (1). Many epidemiological studies 
have confirmed the negative relationship between SEP and 
disease prevalence (even finding occasional contradictory 
results); however, few have investigated socioeconomic 
factors past the SEP Index (2-6).
	 A multi-disease study in Vietnam provided background 
results on the relation between SEP and diseases (2). The 
study demonstrated that population density has a positive
correlation with oral-borne disease. Additionally, it associated 
high percentages of illiteracy with diarrhea, shigellosis, 
dengue fever, malaria, and rabies. Meanwhile, a study on 
household SEP with rates of individual infectious diseases 
risk in Kenya showed an increase in SEP with an increase 
in the overall health of the population (3). The study found 
that individuals in households with the lowest SEP were at 
the greatest risk of infection from Plasmodium falciparum, 
hookworm, and Entamoeba histolytica/dispar, as well as 
coinfection from each pathogen.
	 However, data from both studies demonstrated a negative 
correlation between SEP and infectious disease. The Vietnam 
study found that population density has a negative correlation
with deadly infectious diseases such as measles and 
mumps (2), while the Kenya study found that infection with 
Mycobacterium tuberculosis was most likely in households 
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disease; however, not all socioeconomic variables (SEVs) 
demonstrate significant relationships between vaccinations 
and disease spread.

RESULTS
Part 1: Agent-Based Modeling
	 We first wanted to gain an initial understanding of the 
spread of disease and how socioeconomic variables (among 
others) affect disease. As the modeling assumed that all
people interacted as normal (no social distancing or 
quarantining) and people recovered randomly based on 
probability of recovery per day, our hypothesis was that 
simulated disease will follow a much more dramatic epicurve 
than that of the actual pandemic (i.e., it will peak within only 
a few days), and recovery would occur much earlier. We also 
hypothesized that the more initial infected cases there are, 
the more final cases there will be, due to the fact that there
are more potential cases that can be infected by disease. 

	 In each iteration, or step in a virtual 2D grid (agents move 
to the top, bottom, left, or right box), of the code, diseased and 
healthy computer agents interact in a torus map. By adjusting
the amount of initial infected agents with values of recovery 
and disease, we simulated COVID- 19 in a probabilistic 
scenario. Each simulation only included the spread of disease 
and a constant recovery rate. Other factors, such as climate, 
vaccination, and political position, would be present in the 
real world—by not accounting for these factors, we created a 
baseline for analysis. 
	 The primary value for comparison was the cumulative 
infection rate. We took note of a few key trends in the CDC 
data and our modeling data (Figures 1 and 2) (7). The first 
was that the curves shown by the agent-based modeling were 
extremely similar to those of point source epidemics (8), yet 
we know that due to its person-to-person nature, COVID-19 
is a propagated epidemic (with elements of common source) 
(9, 10). The second was that the simulated pandemic ended 
much faster than the real-world one did, with most trials 
ending before the 100- day mark. This is in opposition to the 
real-world pandemic, which had a rising rate of infection (an 
average slope of 71,115 people per day) (7).
	 From these observations, we accepted the hypothesis that 
the simulated epidemic follows a much more dramatic curve 
than real-world COVID-19 and that recovery occurs quicker. 
However, we rejected the hypothesis that the more infected 
cases there are, the more final cases there are and the longer 
the epidemic lasts—this is because all simulations ended
quickly (before 100 days passed), all with 0 final infected 
cases.
	 By making the key observations comparing real world and 
simulated disease, we were able to deduce that a significant 
factor in the real world (hypothesized by us to be SEVs) 
causes such a difference.

Figure 1: Trends in the total COVID-19 cases in the United 
States reported to the CDC. Cumulative total cases of COVID-19 
from January 23, 2020, to November 3, 2021 as reported to the

Figure 2: Gini coefficients for three trials of COVID-19 agent-based modeling. The Gini coefficient over each step of the code, reaching 650 
steps. Values were graphed by conducting a Mesa library agent-based modeling to represent disease spread. A) 1 index case, B) 5 index 
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Part 2: Infection Rate-Socioeconomics Analysis
	 We next evaluated the extent to which SEVs affected 
COVID-19 spread. This experiment was an analysis on 
the severity of COVID-19 and economic factors, in order 
to determine the relationship between SEP and disease 
prevalence. We ran a Pearson statistical analysis through 
sci.py on data derived from state (California) and national 
datasets for three periods of the pandemic (2/1/2020 to 
10/1/2020, 10/2/2020 to 5/4/2021, and 5/5/2021 to 11/3/2021),
determining the proportionality factor of each region in 
relation to the socioeconomic factors of the area (11, 7). Here, 
we hypothesized that there is a negative correlation between 

infection rates and socioeconomic variables.
	 For each period, as output, we generated a table with 
three columns: the socioeconomic factors, r-values (1 ≤ r 
≤ -1), and p-values. The r-value determined the correlation 
between disease spread (with positive numbers indicating 
a positive correlation and negative numbers indicating a 
negative correlation) and the SEV, and a p ≤ 0.05 indicated 
that said correlation is statistically significant.
	 We observed correlations between various SEVs and 
COVID-19 infection rate. For the first period, GDP was 
the only significant factor (r = -0.2541, p = 0.04). For the 
second period, significant SEVs included public assistance 

Figure 3. Insignificant socioeconomic factors versus vaccination rates in California. Vaccine rates were compared to A) average 
property taxes (r = 0.197, p = 0.138), B) sanitation investment (r = 0.134, p = 0.316), and C) total wages (r = 0.154, p = 0.246). Data was 

Figure 4. GDP versus vaccination rates in Oregon and Vermont. Per-capita rates of vaccination compared to GDP rates of A) Oregon 
with the median population of the US (r = -0.048, p = 0.781) and B) Vermont with the lowest population of the US (r = 0.183, p = 0.531). Data 
was analyzed with Pearson statistic functions.
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(r = -0.2743, p = 0.04) and population (r = 0.3396, p = 0.01). 
Finally, in the third period, general government spending (r = 
-0.2804, p = 0.04), health spending (r = -0.2762, p = 0.04), 
and migration (r = 0.4024, p = 0.00) were significant factors.
	 Using the results above, we found that the SEVs above 
did have a negative correlation with disease prevalence, 
supporting our hypothesis.

Part 3: Vaccination Ratio to Socioeconomic Data
	 This experiment was an analysis on the rates of vaccination 
and economic factors, in order to determine the relationship 
between socioeconomic variables and vaccination rates. 
We also ran a Pearson statistical analysis through sci.py on 
data derived from state (California) and national datasets; 
however, this analysis fitted a larger scope, analyzing and 
comparing data from California, Oregon, and Vermont (11, 
12). Unlike the infection rate-socioeconomic analysis, the 
vaccination-socioeconomic analysis used data from the start 
of the vaccination process in the three states, as to get a 

holistic view of the correlation. Here, we hypothesized that 
there would be a positive relationship between SEVs and 
vaccination rates.
	 We observed that the relationship between sanitation, 
property tax, and total wages to rates of vaccination was 
insignificant and revealed a lack of correlation between these 
values (Figure 3). This was also supported by the r-values 
for the relationship between vaccination rates and these 
economic parameters: 0.197, 0.134, and 0.155 for property 
taxes, sanitation, and total wages, respectively.
	 We also noticed that other than California, GDP correlation 
between vaccination was not high. In Oregon, the analysis 
was shown to be insignificant (p = 0.781) (Figure 4); meanwhile 
in Vermont, the value was once again insignificant (p = 0.531) 
(Figure 4). However, California demonstrated significant 
relationships in GDP (r = 0.664, p < 0.001) and net taxable 
assessed value (r = 0.473, p = 0.00017) with vaccination 
rates (Figure 5). Therefore, we can accept our hypothesis for 
California’s GDP and net taxable assessed value correlation 
with vaccination.

DISCUSSION
	 The agent-based modeling provided us with a few key 
observations regarding simulated and real-world disease 
(13). The first was that the simulated epidemic follows a 
pattern similar to a point source epidemic while the COVID-19 
pandemic follows a propagated spread (9, 10). The second 
was that recovery for simulated disease occurs much faster, 
as our simulated diseases reached constant values within 
100 days, while the real-world pandemic still has a rising case
rate after 650 days (7). Finally, we understood that the 
initial case number does not cause a significant change in 
the graphs, and the final infection rate was the same for all 
trials. This led us to conclude that a factor in the real world 
causes such a difference. We hypothesized, and in our study 
proved to some extent, that these factors are socioeconomic 
variables. The agent-based modeling allowed for a baseline 
to be set on the extent of the impact of outside factors on 
disease spread. 
	 However, this was not a perfect analysis, due to the fact 
that the agent-based modeling did not isolate SEVs solely. 
This is because of the inherent complexity of the real world—

Figure 5. Significant socioeconomic factors versus vaccination rates. Per-capita rates of vaccination compared to A) GDP (r = 0.664, p 
= 1.302E-08) and B) average net taxable assessed value (r = 0.472, p = 0.00018). These images demonstrate a significant linear relationship; 
however, the Pearson statistic simply proves that there is one, even if the relationship is nonlinear. Therefore, the Pearson statistic may not 

Figure 6. Logistic model representing COVID-19 infections in 
Lassen, California during the first period. Infections over time 
from 2/1/2020 to 10/1/2020, overlapping logistic model and real data. 
Period data over three spikes of COVID-19 were used to create a 
model for real data (blue), and then Pearson statistic functions in 
sci.py were used to determine a logistic model (red) for it. The unit 
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to isolate SEVs would mean to account for vaccination, 
population density, climate change, etc.
For a definite conclusion to be drawn on the impact on SEVs 
solely through an agent-based modeling, we would need to 
simulate the status quo more effectively. Another caveat is 
that no matter how elaborate, models cannot simulate human 
behavior. For example, we cannot account for differences 
in infectious doses and therefore unique infection rates per 
person in our model yet.
	 In our infection rate-SEV analysis, we compared 
socioeconomic variables with a variety of economic factors in 
California’s 55 counties. Our general data revealed that there 
is a slight negative correlation between SEVs and the spread 
of COVID-19. We speculate that this may be due to a poorer 
area having more crowded conditions and less hygienic 
living, increasing the spread of disease. We found that GDP, 
public assistance, population, government spending, health 
spending, single family housing units, and migration are all 
factors which had significant correlation with COVID-19 
spread. 
	 One key observation that we made is that the three 
different periods of the pandemic that we used had different 
factors that are significant, with little overlap. This implied 
that more data was required in order to obtain a more 
definite SEV that is correlated to COVID-19 spread. We 
saw this in our attempts to model k (proportionality factor) 
as a function of independent socioeconomic variables, which 
had been unsuccessful due to a lack of data points—each 
county provided only one data point for one period. It is also 
worth noting that although population was used as an SEV, 
population density which accounts for area is ultimately more
accurate. Furthermore, for future research, to make our 
analysis more accurate, we want to use a nonlinear least 
squares regression model to show the spread of disease as 
a function of time, vaccination status, and socioeconomic 
factors, in order to get a more holistic analysis.
	 We would also like to find ways to determine if a nonlinear 
multivariable model is statistically significant, to try to solve 
the gradient explosion problem, which is when large error
gradients accumulate and therefore data analysis is 
inaccurate. Furthermore, we would like to look into the 
susceptible, infected, and recovered (SER) model in 
epidemiology, which can help to provide us with more varied 
and accurate conclusions. 
	 In our vaccination-SEV analysis, we took data from 
California, Oregon, and Vermont, to gain a holistic view on 
how relationships between socioeconomic variables and 
vaccination act in different populations. Those three states 
were specifically chosen, as California has the
highest population, Oregon has the median population, and 
Vermont has the lowest population in the United States (14-
16).
	 Our data revealed that the only area where GDP-
vaccination correlation is significant is in California, most 
likely to numerous counties in the state (and therefore more 
abundant data), in addition to political positions in the state 
influencing rates of vaccination. In addition to that, net taxable 
assessed value showed significant correlation to vaccination. 
We speculated that this correlation is present because people 
in better situations (living in areas with higher GDP and more 
money to be taxed) do not have to make the choice between 
health and money.

	 It is worth noting, however, that raising the per capita GDP 
overall raises a variety of other socioeconomic factors as well 
(17). As a result, we could not assume that simply raising
the GDP is a cure-all to problems related to vaccination—in 
reality, the issue is much more complex, and raising GDP is 
the broadest conclusion to it. More research needs to be done 
on which factors affected by the GDP causes a movement 
towards vaccination. In addition, Pearson’s statistic requires 
independent data points; since we already know that GDP is 
related to a variety of economic factors, this study is limited 
in the conclusions that it can draw regarding other economic 
factors. Although it is likely that many of them do not have an 
impact on vaccination, definite conclusions cannot be drawn 
from them due to the nature of Pearson's statistics.
	 Furthermore, we wish to conduct regression and p-value 
analysis on more states, and control for external factors such 
as political position. This is because the usage of three states,
despite being the maximum, median, and lowest population, 
is not totally representative of the COVID-19 epidemiology 
and socioeconomic factors of all US states. Differences in 
race, gender, and even political position can be significant 
factors when considering vaccine-SEV correlation, which we 
did not account for in this study. We also want to extend our 
reach to other countries and use a python library for spatial 
autocorrelation, or the presence of spatial variation in a 
variable compared to another value. Future research in this 
area could more effectively direct vaccination resources to 
populations who need it, while at the same time aiding these
populations to become self-sustaining vaccination providers 
through helping their economy.
	 Overall, future research in this area would isolate variables 
that impact low-income communities the most, providing them 
with aid in specific areas instead of distributing resources
ineffectively. Rather than trying to raise per-capita GDP for 
example, with this knowledge policymakers could try to focus 
on other factors that help mitigate the spread of disease. Also,
since our data only includes counties of California, Vermont, 
and Oregon, it is not representative of the epidemiology of the 
whole United States. 
	 This study, in its analysis of individual SEVs in addition 
to its usage of an agent-based modeling to serve as a basis 
of analysis, demonstrated different economic factors related 
to both infection rate and disease. By further studying and 
iterating upon the results obtained, we can gain a set of 
socioeconomic factors key to the livelihoods of people during 
pandemics, an use those to influence future policymaking 
regarding disease.	

MATERIALS AND METHODS
	 All analysis performed in this section was done 
with the Pearson statistic function from the sci.
py library, and all code is available at github.com/
Mouse05/relatingsepwithcovid19prevalence, with the 
part 2 code being available at github.com/YYCCaa/
relatingsepwithcovid19prevalence. The Pearson statistic 
measures the linear relationship between two sets of data 
(18). We note that due to the linear relationship outlined, 
the Pearson statistic can provide us with proof of a positive/
negative relationship, but not the complexity of it. Our p-value 
threshold was chosen to be the standard quantity of 0.05
(19).
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Part 1: Agent-Based Modeling
	 We analyzed three periods of data in Part 2 of our study, 
with the final period ending on 11/3/2021. Therefore, we 
can take the CDC’s graph from the start of the pandemic 
(01/23/2020)
to 11/3/2021, which is a total of 650 days, as a basis for 
comparison (Figure 1). From here, w can build the metrics for 
our agent-based modeling (13).
	 The agent-based modeling consisted of a map of 100 
agents in a never-ending torus map, represented by a 30 by 
30-unit square. Each of the agents had the property of having 
or not having the disease, which was transferred between 
them randomly when they were in the same square. In each 
“step” of the code, agents randomly moved into an adjacent 
square, with 29.59% chance of obtaining the disease if 
a diseased agent is also present. This was found with the 
ratio of the reproductive number of COVID-19 (3.38:1), giving 
1/3.38, or 28.58% (20). The reasoning behind this is that there 
is a 1/3.38 chance that the uninfected agent is one of the
3.38 the infected agents cause disease in. In addition to that, 
in each step, diseased agents get cured after 14, 42, or 73 
steps of the code. This was done by taking a case-by-case 
analysis of recovery. In most cases, recovery rate is 14 days 
(21). However, in severe cases (shown to be
0.091% of patients (7)), recovery rates are up to six weeks (42 
days) (21, 22). Finally, in long COVID patients, recovery rates 
are on average 73 days, with 14.2% of victims having this (23,
24). The program plotted the total number of cases.
	 We iterated through 4 sets of simulations, with 3 trials in 
each, changing the amount of index cases to 1, 5, 10, and 20 
for 650 days. This allowed us to consider the spread of the
cases in an environment with vaccination and socioeconomic 
factors, creating an effective benchmark to compare to real-
world infection rate.

Part 1: Agent-Based Modeling
	 We analyzed three different spikes of COVID-19 in 
California, depending on the infection rate throughout 
the pandemic. To obtain this data, we used the California 
government open dataset about the state; the first 
spreadsheet had data regarding COVID-19 cases, deaths, 
number of years, and population size from February 1, 2020, 
to mid-October 2021 (7). We also modeled the data present 
in these spikes in a logistic growth function, to determine the 
proportionality
factor from the graph; the proportionality factor represents the 
speed of COVID-19 spread in the population.
	 A logistical growth model was used to model the 
infection rate of COVID-19 in specific regions, and samples 
demonstrated an almost perfect logistical growth of infections 
over time (Figure 3). However, there were several spikes of 
COVID-19 cases, and we had to divide the entire time span 
(from February 2020 to November 2021) into three periods. 
The first period was from 2/1/2020 to 10/1/2020; the second 
period was from 10/2/2020 to 5/4/2021; the third
period was from 5/5/2021 to 11/3/2021. This made our time 
versus COVID-19 analysis clear and provides accurate data 
on different periods.
	 As aforementioned, we modeled the infection rate of 

COVID-19 as a logistical growth
mode (Figure 6). The process is listed below.
	 We knew that the differential equation of the logistical 
growth model is represented as shown:
Here, t was the time since the start of a new wave of COVID-19 
in a specific region, P was the number of infected people in 
a particular wave of COVID-19 in a specific region (separate 
from cumulative infection rate in a specific region), k was the 

proportionality factor, and L was the carrying capacity—the 
maximum number of people a particular wave of COVID-19 
can infect in a specific region, i.e., the number of susceptible 
populations before any infection. 
was the instantaneous rate of change of the infected 
population, which might have been a good metric of severity, 

but it contained an independent variable and was not 
normalized with respect to the susceptible population.
The general solution was where c shifted the graph 
horizontally and had no impact on severity.
	 However, some regions had a larger population, and thus 
the infection rate curve had a much steeper slope (infected 
people per day), although the pandemic situation might not 
have been perceived as severe as the regions with much 

lower population. Therefore, it was important to normalize the 
metric we use to quantify the speed of infection.

	 From (2) we observed that if we solve for t when the 
infection rate was a percentage of the carrying capacity,
and the solution did not depend on L. Solving this equation, 

we got:
Representing p as a percentage of carrying capacity, to find 
the time from p1 to p2, we obtained the following equation 

from (3):

Therefore, c should not have been considered in this analysis. 
Only k, the proportionality factor, mattered. 

if we set p2 close to 0 and p1 close to 1, we could get the time 
it takes for the specific wave of virus to infect the maximum 
possible number of people. This s was proportional to 1/k, so 
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the speed was proportional to k. Also, note from the equation 
(1) that ceteris paribus, 
was proportional to k. Therefore, k was a good metric to 
measure how fast COVID-19 spreads, and we called it “the 
proportionality factor”. 
	 We used k (the proportionality factor) to measure the 
infection rate of COVID-19. We then found the correlation 
between k and socioeconomic factors. In this case, each 
county for each period represented a data point, and each 
Pearson statistical analysis was performed on all California 
counties during a particular period/wave. These data points 
were considered as separate and independent, as we 
assumed a closed system for each county when we modeled
the spread of COVID-19. The r-squared-value of the model 
was quite high (mostly 99% or higher according to data in 
period 1q.csv, period 2q.csv, period 3q.csv), which proved the
closed-system nature of the spread.
	 For our socioeconomic data, we extracted the following 
factors from California's aforementioned database, using the 
second dataset which contained GDP, net taxable assessed 
value, property taxes, roads, facilities, transportation, and 
total wages from 2018 (11). We replaced the value for GDP 
with a more recent and therefore representative value for the
COVID-19 pandemic, as GDP represents the net worth of 
each county in the state. Then, we divided said data by the 
population count for each county to determine the per capita 
value for each economic factor.
	 From there, we used SciPy’s Pearson statistic function 
to find the correlation between the economic data and the 
infection rate of COVID-19. We first created a list of the data 
from the socioeconomic factors and infection rate. These 
lists allowed us to find the correlation between each value 
using SciPy’s Pearson statistic function, giving us the r and 
p-values for our code. We used data from all 55 counties to 
understand the relation between socioeconomic data and the 
infection rate of disease for all 3 spikes of disease.

Part 3: Vaccination-Socioeconomics Analysis
	 We used the California government open portal to extract 
data specific to California’s net taxable assessed value, total 
property taxes, transportation, and total wages (11). However, 
we also utilized the Bureau of Economic Data to get a more 
recent value for the GDP of California, allowing us to more 
accurately represent the relationship between socioeconomic 
data and vaccination (25). In addition to this, in this analysis, 
we also compared vaccination to GDP in Oregon and Vermont, 
drawing the data from the Bureau of Economic Data (25). We 
then divided the data by the total population count, which is 
from World Population Review’s data on state-divided county 
population.
	 We derived our data on vaccination from the CDC’s and 
California’s vaccination database (12, 26). This provided us 
with vaccination data divided by state and by county, allowing 
us to perform an accurate correlation.
	 From there, we used SciPy’s Pearson statistic function 
again, allowing us to derive the rand p-values for each 
type of economic data in California in addition to GDP and 
vaccination in Oregon and Vermont, in which the r-value 
represents the correlation between disease severity and a 
particular socioeconomic factor, and the p-value represents 
how confident we are that the result is true (anything below 
0.05 is accepted). In addition to that, we used the Matplotlib 

library to plot the data on each of California’s socioeconomic 
factors in comparison to vaccination rates, creating a scatter 
plot we can conclude from.
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