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Article

photosynthetic bacteria, which like most algae types, mostly 
blooms in sea and freshwater (2). The HAB report by National 
Oceanic and Atmospheric Association (NOAA) also states 
that the most common cyanobacteria HAB toxins in the 
U.S. are microcystins, a group of liver toxins that can cause 
gastrointestinal illness in humans and mortality in birds and 
animals. In addition, dinoflagellates and diatoms, different 
types of phytoplankton, are the common species in marine 
and brackish waters. Some of these blooms discolor the 
water to different shades of red and brown and a few appear 
bioluminescent. Commonly addressed as red tides, blooms 
are named due to the red or rust-colored swaths caused by 
Karenia brevis growing in overabundance (3). This NOAA 
study also points out that harmful K. brevis algae are common 
in the Gulf coast of Florida and bloom episodes occur every 
year (3).
	 Harmful Algal Blooms (HABs) are a part of the ongoing 
water crisis and have consistently plagued U.S. waterways 
in recent years (4). In every state with marine economies, 
HABs have caused over one billion dollars in losses during 
the last decade in these areas that rely on recreation, tourism, 
and seafood harvesting (4). These blooms have a significant 
impact on ecological resources, coastal economies, and 
human health. As recent as 2022, there have been more 
frequent HAB events across the U.S. and the whole world 
(3). Dead fish plagued many waterways, and businesses that 
were reliant solely on tourism were forced to close (5). In 
addition, the seagrass-based habitat warped into an algae-
based habitat, rendering the recovery tedious and costly. 
The conundrum is clear as seagrass regrowth is prevented 
by continuous algal blooms. This year, the loss of seagrass 
has resulted in the deaths of more than 800 manatees in 
just Florida, and this number is projected to get worse (5). 
Furthermore, HABs also produce toxins that may result in 
neurotoxic shellfish poisoning, respiratory irritation in humans, 
and even affect the internal system of marine animals and 
birds (3).
	 Currently, data collection is manual and reactionary, 
following the bloom episodes, which is too late and 
insufficient for rapid HAB mitigation. Also, in many areas, data 
collection related to HAB impacts are based on voluntary 
reporting and is inadequate (1). Geographic-based images 
are emerging from the National Center for Coastal Ocean 
Science (NCCOS), which helps to identify bloom locations in 
the United States (2). Furthermore, many current mitigation 
methods are addressing the root cause of algal blooms 
and are centered on awareness of fertilizer overuse. These 
methods revolve around nitrogen and phosphorus chemical 
reduction strategies. Although some organizations are 
working towards achieving on-demand bloom detection, there 
is very limited widespread mitigation following a regional HAB 
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SUMMARY
Recently, Harmful Algal Blooms (HABs), e.g., toxic red 
tide and blue-green algae, have suffocated and plagued 
coastlines and inland water bodies leading to economic 
losses. Currently, batch data collection in many areas 
is inadequate and reactionary following regional fish 
kills. Therefore, there is an inherent need for a “smart” 
solution aimed at preemptive detection and mitigation 
of the impending super bloom through combination of 
concurrent measurements, modeling, and mitigation 
using suppression agents. Our hypothesis is if a Seek and 
Destroy Algal Mitigation System (SDAMS) is engineered 
with a multitude of capabilities, including remote 
algal parameter sensing, wireless data transmission, 
and mitigation using suppression agents, then it will 
preemptively detect and mitigate HABs. The SDAMS 
includes (i) a floatation device with a Wi-Fi microcontroller 
and five sensors for concurrent measurements, (ii) 
real-time data transmission to the cloud, (iii) data 
visualization; diagnostic and predictive analysis, and 
(iv) an algae suppression component. During laboratory 
testing, physical and chemical agents used for mitigation 
noticeably suppressed the algae in various ways. Algal 
suppression occurred by either reducing pH, increasing 
Dissolved Oxygen (DO), or exerting high mechanical 
properties. We conducted predictive analytics to 
quantify the influence of the suppression agent on algae 
and compared the green spectrum strength (indicating 
algal intensity) to the DO concentration. Using machine 
learning, a 4th order polynomial equation with 94% 
accuracy provided the best curve-fit to explain the 
green spectrum-to-DO relationship. This cost-effective 
solution can be applied to instantaneously suppress, or 
preemptively mitigate, HABs to minimize environmental 
impacts.

INTRODUCTION
	 Algae are a beneficial part of our ecosystem; however, 
select types of algae can be very damaging. Diverse 
suites of phytoplankton, cyanobacteria, benthic algae, and 
macroalgae produce blooms in water bodies (1). These 
blooms pose significant threats to clean water quality and 
living organisms, and can cause substantial economic and 
recreational impacts (1). When algae containing toxins grow 
rapidly and out of control, they form HABs. Toxins produced 
by algae differ by species and region and have various 
negative impacts on humans, animals, and the environment. 
Cyanobacteria, also known as blue-green algae, is a type of 
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episode. If proper mitigation methods are used, it can help 
prevent dissolved oxygen depletion and fish death at an early 
stage before algal biomass reaches critical thresholds. While 
there is unanimous consensus on the need for rapid HAB 
mitigation, suppression activities via mitigation methods, at 
times, can be controversial due to the unintended ecosystem 
impacts by agent-doped waters.
	 Algal mitigation techniques primarily fall under four 
broad categories: (i) physical or mechanical, (ii) chemical, 
(iii) biological, and (iv) environmental controls (6). Physical 
mitigation uses physical means to remove toxins from water 
ecosystems by using sediment-based methods, for example, 
clay flocculation (6). Bentonite clay can help remediate water 
bodies as it has the tendency to adsorb chemicals as well 
as organisms like algae, which clarifies the surface water 
(6). Bentonite is a natural mineral formed from volcanic ash, 
which, when dispersed, has the ability to agglomerate and 
remove cells such as cyanobacteria and dinoflagellates 
from water bodies. Limitations include the acceleration 
of muck formation in the basin of water bodies. Chemical 
mitigation utilizes artificial chemicals and compounds, e.g., 
aluminum and copper sulfate (6). Aluminum sulfate (alum), 
a chemical agent, helps to clarify turbid lakes polluted with 
algae through precipitation (6). Alum is a flocculant, which 
has an affinity for phosphorus, an algal nutrient. Flocculation 
draws phosphorus and other particulates including algae and 
settles to the bottom of water bodies thereby altering turbidity 
levels from cloudy to clear. Limitations include chemical 
contamination of water bodies if used excessively. Biological 
mitigation is a phenomenon in which an organism, e.g., 
macroalgae, predator enhancements, bacteria, viruses, and 
allelopathic organisms, produce biochemicals that impact the 
germination, survival, growth, and reproduction of another 
organism (6). Limitations include potential genetic mutation of 
HABs. Environmental mitigation includes strategies involving 
physical or chemical modifications of the environment such 
as dredging in water bodies, aeration, water circulation, and 
limiting the use of fertilizers (6). This environmental mitigation 
technique is more reactionary as HABs may still be able to 
form.
	 Our hypothesis was if a custom-designed algae 
mitigation system is engineered with environmental sensors 
and wireless data transmission abilities, then it will aid in 
preemptive algae detection and mitigation. We have designed 
the SDAMS (Seek and Destroy Algae Mitigation System), 
which includes the following four components. (i) A floatation 
device that includes a microcontroller connected to five 
distinct water quality sensors for concurrent measurements of 
algal parameters. (ii) Continuous real-time data transmission 
to an interactive cloud. (iii) Data analysis in a visual platform 
(e.g., a mobile device) to monitor real-time algal parameters, 
and subsequently conduct desktop Diagnostic and Predictive 
analytics. (iv) A mitigation component containing an agent 
dispersal pump controlled via a switch. In this research, we 
developed a solution for early detection and prediction of an 
impending HAB episode through a combination of remote 
measurements, statistical modeling, and suppression agents.

RESULTS
	 As the type, shape, composition, and color of HABs are 
different, a singular metric that could be considered as a 
leading indicator to detect an algal bloom or algal demise 

cannot be relied upon. It is for that reason, a collection of five 
algal bloom parameters in conjunction were considered for this 
research, e.g., Color Spectrum Intensity, Dissolved Oxygen 
(DO), pH, Photo Intensity (both Ambient and Water), and 
Temperature. In this research, we used three different agents 
for algal suppression: Aluminum Sulfate, Copper Sulfate, and 
Bentonite Clay. The five bloom parameters were measured 
during the experimentation, and overall, diverging trends were 
seen on select metrics in isolation. Three key metrics that 
showed appreciable temporal movements following agent 
addition include green spectrum (represents the algal growth 
in a pond), DO, and pH. Our control sample, which was an 
algae-rich tank with no additional agents yielded an average 
pH of Chlorella vulgaris (culture of green algae that we used 
during this experimentation) was 8.2, the average, the DO 
was 5,026 µg/L, and the average green spectrum index 
was 133. The physical and chemical agents that we used to 
suppress the algae yielded appreciable results. Based on the 
laboratory research, the agents suppressed algae via distinct 
methods and did not vary water quality parameters in the 
same manner. Agent behavior and interaction following the 
dispersal in the algal pond simulators are discussed below:

Alum Agent Interactions
	 We noticed dramatic changes in DO levels in a simulator 
doped with the alum suppression agent (Figure 1). DO had 
increased temporally due to the influence of alum. Also, after 
72 hours from doping the waters with the agent, the pond 
simulator had the most clarification or most decrease in green 
spectrum intensity (Figure 2).

Copper Sulfate Agent Interactions
	 Copper sulfate affected the pH of the water in time leading 
to algal demise and settling. An initial dip in pH can be 
attributed to acidity, however, algae thrived, and the bloom 
momentum continued despite agent addition (Figure 3). After 
about 36 hours, a rapid decline in pH was seen suggesting 
rapid algal demise.

Bentonite Agent Interactions
	 Clay flocculation and sedimentation were observed. 
Another key observation noted was that pH and DO did not 
vary noticeably throughout the course of the experiment, yet 
suppression of the algal column occurred (Figures 1-3).

Figure 1. DO2 variations in C. vulgaris algae with suppression 
agents. Three suppression methods were evaluated: Bentonite 
(brown), Alum (green) and Copper Sulfate (purple). Alum had a 
significant increase in DO2, while Copper Sulfate had a gradual 
decline and Bentonite was steady.
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Predictive Analysis (Multiple Regression)
	 Predictive analytics were conducted to observe the 
relationship between the alum chemical agent and algal 
suppression. This finding suggests that 89% of the variability 
of the green spectrum (dependent variable) can be explained 
by the entire set of independent variables (pH, DO, light 
intensity, and temperature). Additionally, the p-value and other 
statistics indicated a good correlation between the variables 
(p = 1.3 x 10-35, which is less than 0.05).

Predictive Analysis Using Machine Learning 
	 To enhance the predictive power of the statistical models, 
Machine Learning (ML) models were created (Figure 4). ML 
models were created to predict the DO based on the green 
spectrum values over time. We programmed ML models using 
the train set (60% of the data) and utilized hyperparameter 
tuning for each model whereby specific parameters were 
modified multiple times to determine which combination of 
hyperparameters could yield best performance in terms of 
Mean Squared Error (MSE), Mean Absolute Error (MAE) and 
relative error. An optimal model is reached when the best 
combination of hyperparameters is achieved and found to 
give best performance on the validation set (20% of the data). 
This can subsequently be applied to the test set (20% of the 
data).
	 The benchmark model attempted to use polynomial 
functions as its basis. It was used to fit a nonlinear data trend. 
For this model, hyperparameter tuning was applied by altering 
the Mth order polynomial. After we conducted hyperparameter 
tuning, we found that a 4th order polynomial was the best 
choice for modeling this dataset and the model. Based on the 
curve fit, the model has a relative error of 6%, which leads to 
an accuracy of over 94% as determined by dividing the Mean 
Absolute Error of the green spectrum (2.56) by the range of 
green spectrum. Additionally, the mean squared error on the 
validation set was found to be 10.73, the mean absolute error 
was 2.56 and the root mean squared error was 3.28.

DISCUSSION
	 We hypothesized that if an algae mitigation system 
is engineered with environmental sensors and wireless 
transmission capabilities, then it will help in preemptive algae 
detection and mitigation. The engineered SDAMS device 
included four components namely, a floatation device with 

sensors, real-time data transmission to the cloud, predictive 
analytics, and a dispersal pump for mitigation. During 
SDAMS laboratory testing, the physical and chemical agents 
(aluminum sulfate, copper sulfate pentahydrate, and bentonite 
clay) used to suppress the algae yielded appreciable results 
and they suppressed algae through different ways.
	 Alum, a chemical agent, was also effective in clarifying 
the algal pond simulator. Alum is a flocculant that suppresses 
via its strong colloidal properties (7). During coagulation, 
particles are drawn together by van der Waals forces and they 
form flocs, which later settle to the bottom thereby altering the 
turbidity levels from cloudy to clear. The coagulation process is 
affected by pH, salts, alkalinity, turbidity, temperature, mixing, 
and coagulant chemicals as the water quality parameters 
change dramatically after agent dispersal. Aluminum sulfate 
will also help eliminate odors in addition to removing the algae 
(7). This can be applicable for usage in larger water bodies. 
According to a source, aluminum sulfate mitigates algal growth 
by controlling the amount of phosphorus, a nutrient from 
fertilizer runoff, available in water (7). The agent reacts with 
water to form aluminum hydroxide, which binds and removes 
the phosphorus (7). As the algal mass is devoid of its food 
supply (phosphorus), they die. Most importantly, the potential 
for future large-scale algal reproduction would be diminished 
due to the phosphorus shortage. This chemical agent will not 
harm marine life or humans if used within thresholds below 
52 micrograms g Al/L, and pH should remain within 5.5 to 9.0 
(7). Therefore, if used within the threshold, alum is a great 
chemical agent for instantaneous mitigation efforts in the 
future.
	 Copper sulfate was suitable in clarifying the algal pond 
simulator. Neutral or acidic pH levels can help stunt the 
growth of algae. Copper sulfate kills algae directly by binding 
to and damaging the algal cell (6). Copper sulfate reacts with 
water to form copper carbonate, an ineffective compound, 
which collects to the bottom of the pond and does not break 
further. Too much buildup of copper compounds can kill plant 
life and create ripple effects in the ecosystem (6). Despite 
substantial reduction in the size of HABs, copper sulfate 
is considerably lethal and could be harmful to the marine 
environment if used without a controlled strategy (6). So, it 
should not be used in waters that support aquatic life as it 
is more susceptible to chemical changes. As this chemical 
agent is not biodegradable, it can make runoff hazardous (6). 
In addition, copper sulfate is not useful in excessive bloom 

Figure 2. Spectrum variations in C. vulgaris algae with 
suppression agents. Color and line indicate the suppression 
method. All suppression agents had a gradual decline in light 
intensity over time.

Figure 3. pH variations in C. vulgaris algae with suppression 
agents. Color and line indicate the suppression method. The pH for 
both Alum and Bentonite were mostly stable, while Copper Sulfate 
had a significant decline.
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situations as it can only eliminate the top algal layer of a 
water body (6). This might eventually make the bottom very 
sterile, thereby preventing the growth of beneficial bacteria. 
Therefore, although copper sulfate is good for future algal 
suppression, it should be dispersed in very minimal amounts.
Bentonite, a physical agent used for the algal suppression in 
the Laboratory Analysis Test (LAT) was efficient in clarifying 
the algal pond simulator. The physical agent had a maximum 
molecular weight of 422 g/mol (8). This indirectly meant that 
the agent had the highest density among agents tested, which 
aids in sedimentation. Typically, as the molecular weight 
increases, mechanical properties of the substance increase 
and are less chemically reactive (8). Based on research 
studies, bentonite provides strong adsorption properties 
(8). The volume of bentonite increases several times when 
in contact with water, which aids algal particle capture and 
sedimentation (8). Most importantly, bentonite did not result in 
dramatic fluctuation in the water quality parameters such as 
pH and DO. ​​Lastly, bentonite is less susceptible to chemical 
changes in water quality parameters and can be used in 
sensitive waters. As evidenced in the results, in the real 
world, bentonite is strongly applicable and or conducive to 
select sensitive water bodies for clarification without altering 
water properties. However, their limitation is related to 
potential muck formation. This may occur if there is excess 
and continuous dispersal of the agent. Bentonite poses no 
dangers to marine life when used appropriately (6).
	 We conducted predictive analytics to observe the 
relationship between the alum agent and algal suppression. 
Upon training, it was observed to not be effective as the 
spread of this data cannot be modeled using a straight 
line and had a poor MSE and MAE. Further, based on the 
regression statistics, 89% of the data can be explained by 
this model. Finally, based on the Machine Learning Model, 
it was observed that the best model obtained during 
hyperparameter tuning was found to be a linear regression 
model that uses polynomial basis functions. We found that 
a 4th order polynomial was the best choice for modeling this 
dataset.

	 The SDAMS lab testing was successful. This device was 
built in a pilot scale, and the concept functioned as expected. 
This SDAMS cost less than $250 to build and was powered by 
a 5V rechargeable battery, which only has a 2-week charge 
life. Furthermore, the SDAMS requires periodic cleaning of 
the sensors for data quality. Finally, the SDAMS also requires 
active Wi-Fi for connectivity. In the future, this system can be 
improved by using Long-Range Wide Area Network (LoRa 
WAN) technology.
	 The results of our experiment supported our hypothesis 
as all aspects of this research functioned successfully, 
including real-time detection of algal bloom parameters, data 
visualization in the cloud, algal suppression using chemical 
and physical sedimentation agents, predictive modeling, and 
remote mitigation using a pump. In the real world, a scaled-up 
version of this solution could preemptively detect and predict 
an impending super bloom episode.

MATERIALS AND METHODS
Floatation Device Shell Engineering and Construction
	 A 3D model of the custom-designed floatation device was 
sketched using CAD (AutoCAD Fusion360) (Figure 5). The 
material composition of the floatation device consisted of a 
15cm x 10cm x 2cm polystyrene base module wrapped in 
a cork underlayment. A 5cm hole, three 2cm holes, and a 
0.5cm hole were bored through the module. Subsequently, 
the module was coated with hydrophobic sealant to repel 
moisture. Using pipe cutters, two PVC pipes 20cm in length 
and two additional pipes 15cm in length were cut. The pipes 
were joined to form a rectangular frame using PVC elbows. 
Then, the waterproof module was mounted on the 20cm x 
15cm PVC support frame. The entire engineered assembly 
was kept afloat by sink-resistant polyethylene tubing around 
the perimeter. Five transparent polyethylene tubes of suitable 
sizes were selected and firmly fitted through the bore holes 
on the module. These tubular containers housed the sensitive 
electronic sensors and other circuitry.

Figure 4. A Linear Regression Benchmark model with a Polynomial Basis. The Regression Model presents a balanced curve fit with an 
M value of 4, and an R2 of 0.7. The mean squared error is 10.7, the mean absolute error is 2.6, and the root mean squared error is 3.3. These 
statistics were concluded after training, validating, and testing the data set. The model represents a balanced curve fit of the test set. These 
models are used to predict impending super blooms.
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SDAMS Circuit Design 
	 An Arduino MKR1000 Wi-Fi microcontroller connected 
to five water quality measurement sensors was used for 
the device prototype. The five sensors included a spectrum 
sensor module (Teyleten Robot GY-31 TCS230), dissolved 
oxygen sensor (DFROBOT Analog DO), pH sensor (GAOHOU 
pH Electrode Probe), ambient and water photo intensity 
sensors (Light Dependent Resistors), and a temperature 
sensor (Songhe DS18B20 Thermal Probe). A circuit diagram 
was developed using EasyEDA, an electronic circuit design 
tool. This layout was translated to a microcontroller and 
sensor circuit connectivity (Figure 6). The entire system was 
controlled by a 5V battery pack.

SDAMS Microcontroller and Sensor Connectivity
	 The assembly containing all electronic components were 
subsequently inserted into their respective polyethylene tubes 
(Figure 7). All sensors had the capacity to measure and send 
data electronically to the programmable microcontroller, 
which was capable of wirelessly transmitting information.

Pond Simulator Setup
	 A plexiglass tank with dimensions of 51cm x 26cm x 31cm 
served as a pond simulator. It was filled with about 27 liters of 
dechlorinated water. The water tank was then inoculated with 
a vial containing a C. vulgaris algae sample. The solution was 
left untouched to culture under oxygenated conditions using 
an aerator. After 3 weeks, the algae-rich tank was used for 
the lab testing of the SDAMS sensors and circuits. The algal 
tank was also used for testing various physical and chemical 
algal suppression agents.

Laboratory Experimentation
	 27 liters of C. vulgaris algae was sufficiently cultured 
in a pond simulator and 1.5 grams of bentonite was added 

to suppress the algae. Subsequently, the experiment was 
repeated using the same quantities (1.5 grams) of either alum 
or copper sulfate in constant portions (27 liters) of algae in 
the simulator. Readings were taken at one-minute intervals 
continuously for over 72 hours. The algal parameters 
transmitted wirelessly by SDAMS were recorded in real-time 
in an Internet of Things (IoT) cloud dashboard (Figure 8).

Real-time Data Transmission
	 Water quality sensors were connected to the digital 
and analog pins on the Wi-Fi microcontroller supported 
by Serial Peripheral Interface communication protocol. 
The microcontroller was programmed using an Arduino to 
automatically connect to a local Wi-Fi or to a mobile hotspot 
for wireless connectivity. A unified C++ code was created to 
control the SDAMS sensors and transmit algal parameter 

Figure 5. CAD Drawing of SDAMS using AutoCAD Fusion360. 
Model represents a waterproof shell of a floatation device with bore 
dimensions and 5 sensor placements.

Figure 6. Microcontroller and Sensor Connectivity. This circuit 
layout contains 5 distinct algal parameter sensors all soldered and 
taped to a wireless microcontroller (red box). Sensors include Light 
Intensity Ambient (top right), Light Intensity Water (middle), pH (top 
left), DO2 (left), Temperature (bottom left), and Spectrum (bottom 
right).

Figure 7. SDAMS Device. This is the completed prototype of the 
Seek and Destroy Algae Mitigation System. This includes 5 distinct 
sensors and a microcontroller housed in a custom-designed 
floatation device.
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variations to an “open source” IoT Thinger.io platform. The 
IoT platform allowed for cloud visualization including real-
time interactive dashboards and charts with on-demand 
data reports for desktop diagnostics and predictive analytics 
(Figure 8).

Algae Mitigation
	 As the final element in the SDAMS system, this step 
attempted to mitigate algae by remotely activating a pump to 
suppress the algae by spraying an agent based on descriptive 
(temporal charts) and predictive analytics (regression 
models) (Figure 8). For this step, a separate dispersal pump, 
relay module, and an activation switch was constructed. 
When water quality parameters displayed high readings 
indicating intense algae presence, the pump was activated, 
which enabled agent dispersal. In real-world applications, a 
corresponding suppression agent solution can be connected 
inline to the pump, which can be sprayed remotely.

Statistical Methods
	 A paired ANOVA test was conducted on the water quality 
parameter data to determine if there is a statistical difference 
between the dependent variables. Machine Learning was 
further used for the data analysis portion of this research to 
achieve more comprehensive results. All predictive analysis 
was programmed in Google Colab using Python. The first step 
was data preprocessing where the datasets were cleaned 
and organized with independent and dependent variables 
(DO and Green Spectrum) in their respective columns. Then, 
the lab data was split into train, validate, and test datasets. 
A 60-20-20 split was assumed for this experimentation, 
where 60% of the dataset was used to train the model, 20% 
to validate, and 20% to test the data. To train the data, a 
simple model was created as a benchmark to initialize the 
regression model and to subsequently curve fit the data. We 
iteratively generated improved linear regression models and 
for each new model created, its performance was measured 
by applying it to the validation set. Ten hyperparameter tuning 
tests were conducted for the Polynomial Basis Function 
benchmark model. The model was tested by changing the 

degree of the polynomial to 3, 5, 7, 9 and 2, 4, 6, 8, 10, 12. 
Finally, it was observed that the best model obtained during 
hyperparameter tuning was found to be a linear regression 
model that uses polynomial basis functions.
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