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plants, accounted for 38.95% of the overall plant species in 
the sampled Beijing urban built-up areas (9). The proportion 
was more than three times higher than that of the exotic 
plant species in the nearest mountain area. In particular, a 
large number of exotic species were found of single genus 
and single family in the sampled windows, which made the 
characteristics of plants and their distribution areas deviate 
from the local natural conditions (9). It may thus lead to potential 
issues, ranging from an increased cost for maintenance of the 
local and introduced plant species to increased difficulties for 
protection of local species, ultimately affecting the stability of 
urban ecosystems.

Considering the various ecological and artificial factors 
an urban greenery management should be designed with 
scientifically clear and solid guidance. However, current 
urban greenery management guidance is ambiguous 
and insufficient to serve that purpose (11).  Compared to 
other strategies, mathematical modeling strategy bears 
its advantage on assessing the biodiversity of a plant 
community quantitatively. Existing mathematical models 
used in mountain regions proved the feasibility of using this 
strategy in green space planning, although those models 
cannot be directly applied to urban regions because a higher 
proportion of trees are grown in mountains than in cities (12-
15). This is likely because trees are considered to have higher 
ecological service value than herbs and shrubs, but there are 
very few natural spaces available for tree planting in cities (9). 
Nevertheless, many herbal species can be grown in cities, 
and these species would also significantly contribute to the 
city’s biodiversity (9,16-17). It is important to develop a more 
precise command of planning urban green spots through 
mathematical modeling to achieve high eco-sustainability. 
By building a nonlinear programming model whose feasibility 
and accuracy was evaluated and optimized using testing 
fields in a Beijing city park, the plant compositions for urban 
greenery management plans with high biodiversity and low 
cost can be achieved.

RESULTS
Model Establishment

The ultimate goal of our model was to optimize biodiversity, 
plant fitness level, and managing costs together and thus 
generating a plan with high biodiversity and fitness, and low 
managing costs. To achieve this goal, we created a nonlinear 
programming model that optimized the comprehensive 
influence of plant fitness, biodiversity, and managing cost. We 
defined the plant fitness index (ft) as reflecting on how well all 
plants could grow on a specific piece of land, which ensures 
the basic assumption that the plant species selected by the 
model could prosper in the community. The biodiversity index 
(BI) described the biodiversity level of a community. We used 
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SUMMARY
Urban green space is critical for humans and other 
organisms living in cities. Researchers have noticed 
that urban green space planning has been focusing 
more on ornamental and public management 
purposes but less on its ecological purpose, which 
has a negative impact on eco-sustainability. We 
hypothesized that an urban greenery management 
plan with high eco-sustainability can be achieved by 
calculating the composition of a plant community 
through mathematical modeling. To test our 
hypothesis, we created a nonlinear programming 
function that generated a plant community 
composition aiming for high plant fitness, high 
biodiversity, and low managing cost. Green fields in a 
Beijing city park, comprising different combinations 
of plant species were used to optimize our model. 
Although the outputs of the optimized model do not 
match completely with the composition of testing 
fields, they illustrate possible patterns for plant 
community development. By applying this model, 
urban green space can be finely designed to become 
both ecologically and economically sustainable.

INTRODUCTION
Biodiversity is of crucial importance for an ecosystem (1). 

Studies show that increasing biodiversity in an ecosystem 
when the overall biodiversity is low can improve the stability 
of that ecosystem (1-3). Plant species diversity influences 
the biodiversity of other organisms such as birds, insects, 
and fungi (4-6). Plant species diversity is fundamental to the 
community’s biodiversity as a whole (7,8). Therefore, it is 
crucial for green spots to have high plant species diversities. 
With the continuous advancement of China's urbanization 
process, the natural habitat in the rapidly expanding urban 
areas has decreased. The increased urban ecological 
burden threatens the urban ecosystem and the well-being 
of residents. Therefore, in recent years, the urban ecological 
environment construction has received widespread attention, 
and particularly, green space management have been 
strengthened. However, there are still many problems in 
urban greenery management that need to be addressed 
scientifically and economically, e.g., the green space planning 
and layout, green space composition, integration of urban 
and rural greening, and local biodiversity protection.

Several studies evaluated the species richness of artificial 
green spaces in Beijing city (9,10). Hou et al. indicated that 
the proportion of exotic plant species, mainly ornamental 
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the Simpson index as our BI. At the same time, because this 
research focused on the biodiversity of plant species, BI was 
calculated using the plants’ importance values, which is the 
measure of how dominant each species is on a given field, 
reflecting on the amount of resources each species gains (13). 
The cost index (ct) inversely evaluates the total monetary cost 
of seeds/seedlings of the target field. The goal of our model 
was to have a maximum ft, BI, and ct.

The fitness of a plant describes the condition of this plant 
growing on a specific piece of land. In this way, we defined 
fitness as the adjacence of plant and land trait parameters. 
We selected light preference and moisture preference to 
evaluate the fitness of the plant species because they were 
crucial to plant growth as being key factors in photosynthesis. 
We obtained plant parameters from the Ellenberg index. 

For land parameters, we defined the land light value (LV) 
as the light intensity level of that piece of land. The available 
light on a piece of urban land is associated with the buildings 
around it. Therefore, we defined LV of a piece of land as the 
proportion of the area that receives sunlight for a period of 
time. We used integral equations in the model to calculate the 
LV of a given area in a certain location with one, two, or three 
buildings around it. The result LV is an index in the interval of 
[0,1] which is positively related to the amount of light that land 
could receive (see Materials and Methods).

The moisture level (MV) of a city's land is associated with 
three factors, e.g., the local climate, the irrigation systems, 
and natural water sources nearby. None of the testing fields 
have irrigation equipment. The Type I testing fields are 
located within 10 meters of a river, and the Type III testing 
fields are located within 100 meters of a river. Based on 
the three factors of the testing fields, the MV was set as 0.4 
for Type I, 0.2 for Type II, and 0.3 for Type III. However, to 
avoid generating extreme values (i.e., zeros) in calculating ft 
when MV is subtracted from the plant’s moisture value (see 
Equation 2), the MV for Type I and II were slightly modified 
(i.e., adds or subtracts 0.01). In this way, the ultimate MV for 
Type I was set as 0.41, and the ultimate MV for Type II was 
set as 0.19.

Since both the plant trait parameters and the land trait 
parameters can be written as a binary vector, and all the 
elements in these vectors fit into the interval of [0,1], we used 
Euclidean distance to evaluate the likeliness between these 
vectors:

[Eqn 1]

where ai and aj are the first elements of two different vectors, 
and bi and bj are the second elements of two vectors. 
Therefore, the fitness (ft), positively related to the plant 
species' fitness level, was calculated by:

[Eqn 2]

in which n is the number of plant species, xi is the population 
of the ith species, cvri is the unit coverage of the ith species 
(i.e., the coverage of a single plant in dm2), A is the total area 
of the target field (in dm2), LIi is the light value of the ith species, 
WAi is the moisture value of the ith species, LV is the land light 
value, and MV is the land moisture value.

In order to have our ct inversely related to the total cost of 
seed/seedlings of plants, we calculated it as:

[Eqn 3]

in which xi is the population of the ith plant species, ci is the 
unit cost of the ith species (in CNY), A is the total area of the 
target field (dm2), and  is the highest unit cost-per-
area among all plant species within the library (in CNY/dm2). 
By doing so, the fraction in the equation will be constantly 
smaller than 1. By subtracting the fraction from 1, we ensured 
that the resulting ct will decrease as the total cost (i.e., the 
numerator in the equation) increases.

We used nonlinear programming as the main function 
of our model. Since the three parameters (i.e., ft, BI, and ct) 
are independent of each other, we constructed our objective 
function by multiplying these three indices. The resulting 
nonlinear programming model is:

[Eqn 4]

where n is the weight of ft and BI, a real number in the range 
of [1,4] whose range is chosen for the simplicity of the model 
and also to ensure that the difference between the weight 
of ft and BI would not be too significant, and “Max Z” is a 
representation of the maximization objective function for the 
nonlinear programming. All three indexes in Equation 4 are 
associated with xi – the population of the ith species – which 
are the decision variables of this nonlinear programming. In 
the restrictions, cvri is the unit coverage of the ith species 
(in dm2), and A is the total area of the target field (in dm2). 
The first linear restriction ensures that the total coverage of all 
plant species will be equal to the land area, which means that 
the entire land will be covered by plants. The initial value for n 
in testing is 1. This nonlinear programming model will result in 
a row vector composed of all xi that generates the maximum 
value of Z. The cross product of this vector with the coverage 
vector (i.e., a column vector composed of all cvri) is a plant 
composition vector that provides the suggested coverage of 
each plant species in the target field.

Due to the requirement of the R package Rdonlp2 (version 
3042.11/r6080) (18) for nonlinear programming, we used 10 as 
the initial iteration value for all xi, ensuring that the initial total 
coverage of the plant community will not exceed the field area 
and avoid local optimization. The overall input for this model 
is the light and moisture information of both the target field 
and plant species, and the overall output is the population of 
all plant species (i.e., {xi}) that achieve a maximum value for 
the objective function. When applying this model, we sorted 
plants into three categories – arbors, shrubs, and herbs – 
based on their different niches. Arbors are separated from 
herbs and shrubs when establishing the objective function, 
and both share the same land area. This division is practical 
because shrubs and herbs are able to grow under most of 
the arbors.

To simplify the model testing process, we considered an 
ideal situation to restrain the number of variables involved 
in the equation. In an ideal situation, the plant community 
with the highest eco-sustainability should be comparable 
to the plant community in a well-growing wild area (i.e., we 
defined well-growing as the plant community does not have a 
great disturbance in the duration for its herbal populations to 
undergo a complete life cycle). These areas require no or little 
human management, and the seed and seedling costs could 
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be neglected. Due to this neglection, the main function of the 
nonlinear programming was modified to Equation 5:

[Eqn 5]

Model Testing
In order to assess the feasibility and accuracy of the 

simplified model, we compared modeled and factual plant 
compositions in real urban green spaces mimicking well-
growing wild plant communities. We chose Yuan Ming Yuan, a 
previous royal garden built in the Qing Dynasty and currently 
a historic park occupying a total area of 864.9 acres in the 
Haidian District of Beijing City, for its varied types of urban 
green space with scarce long-term human management. 
We selected a total of six testing fields in Yuan Ming Yuan 
with shrubs and herbs, the area (A) of which being roughly 
750 dm2 individually. The testing fields have not been cared 
for by humans for years, making them ideal representations 
of urban plant communities mimicking wild communities. The 
testing fields (q1-6) were classified into three groups based 
on their distinct light and moisture levels (Table 1). Shades 
in the light level of q1,2,5,6 were calculated with measured 
lengths and heights of the walls and buildings surrounding 
the respective fields (Figure 1 and 2). The field records of the 
plant compositions were described by the importance value 
of each species (Figure 3). There are shared characteristics 
of the testing fields within each field types. Crepidiastrum, 
Ophiopogon, Oplismenus, and Viola are genera shared by q1 
and 2. Among the four genera, Ophiopogon and Oplismenus 
combined formed the dominant plant groups in these 
quadrats. Amaranthus, Portulaca, Potentilla, and Setaria are 
genera shared by q3 and 4, with Setaria dominating in both 
quadrats. Glechoma and Setaria are genera shared by q5 
and 6, with Glechoma being the dominant genus.

To test the accuracy of the modeling strategy, we 
established a plant database including information of the 
plant type, height, coverage, light value, moisture value, and 
unit costs for the 16 plant species found in the six testing 
fields (Table 2). We fed database information into Equation 
5 to generate one simulation result for each field type, e.g., 
q7 for field type I, q8 for field type II, and q9 for field type III 
(Figure 4). To train the mathematical model to generate the 
most satisfying proximity to factual results, we changed n 
values in the range of [1,4] (n = 1, 2, 3, 3.5, 4) in Equation 5 
to modify the contribution of biodiversity and fitness for the 
simulating plant community, and we conducted Two-Way 
Indicator Species Analysis (TWINSPAN) between modeled 
results with the testing field records (Figure 4). Increasing the 

Figure 2: A rod and its shadow. The perpendicular bold line 
represents a rod, and the inclined bold line represents its shadow. 
The two thin, black dash lines are the length of the shadow’s north-
south (y) and east-west (x) components, respectively. θ0 is the solar 
altitude at this moment, while θ1 and θ2 are the altitude angle of the 
shadow’s two components. All lengths are in decimeters, and all 
angles are radians.  

Table 1: Testing fields and their corresponding light & moisture 
levels. q1-6 are the names of the six testing fields belonging to field 
types I-III based on light and moisture levels. LV represents the light 
value of each field and MV represents the moisture value of each 
field.	

Figure 1: A land with two buildings. The center rectangle in the 
figure represents a piece of city land with an east wall and a south 
wall. xe is the height of the east wall’s shade (EWS), ye is the distance 
between the EWS and the south wall, ys is the height of the south 
wall’s shade (SWS), xs is the height of the SWS, h is the height of the 
wall, and L and S are measurements of the length of two sides of the 
land. All lengths are in decimeters.
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n value in Equation 5 increased the impact of the fitness index 
and lowered the impact of the biodiversity index. Among the 
five models adapted with n values, the modeled result with 
n = 3.5 showed the most proximal simulation with the factual 
results based on TWINSPAN clustering of their field types. 
Specifically, q9, the modeled result of field type III with n = 3.5 
shared the same dominant genera Glechoma with the two field 
records of type III, namely q5 and q6 (Figure 5). Additionally, 
in this case, the two modeling quadrats both contained 
genera Setaria, Potentilla, and Geranium (Figure  5). 
Therefore, although q7 and q8 were inversely grouped with 
their corresponding types, n = 3.5 was still considered to be a 
suitable value.  After the n value was determined using ideal 
and simplified scenarios, the initial equation which models 
common urban green space can thus be modified as:

[Eqn 6]

DISCUSSION
We used the nonlinear mathematical modeling strategy 

to generate a plan to achieve high eco-sustainability of the 
urban plant community. This approach is different from 
current biodiversity indices (e.g., beta diversity indices) since 
the latter can only assess the biodiversity of an ecosystem, 
while our model can provide practical plans for managers to 

schedule a green spot. Mathematically, the objective function 
of our model is positively related to the plant fitness and 
biodiversity index, and negatively related to management 
costs. The equation of the model was optimized for a range 
of n values by comparing simulated plant compositions with 
field records in selected testing fields in Yuan Ming Yuan, a 
city park in Beijing. 

We documented the plant communities on the six testing 
fields (Figure 3d). The shared characteristics in dominant 
plants observed in each field type suggest a strong growth 
advantage of certain plants under specific light and moisture 
conditions. However, no communities in the two testing fields 
per field type showed the same plant composition, suggesting 
that factors other than light and moisture could also influence 
a plant community’s composition, and that there could be 
various kinds of plant composition under the same light and 
moisture conditions.

The best-fit model – with Equation 6 as its objective 
function – heavily weighs plant fitness to biodiversity. We 
reasoned that these uneven weights appear because plant 
fitness could be the precondition that decides whether a plant 
species could prosper on a piece of land, while community 
biodiversity is the outcome of plant species colonization. In 
another word, plant fitness determines whether a species 
could survive on a field in the first place, while biodiversity only 

Figure 3: Plant community of the testing fields. Representative plant communities were pictured for (a) q2, (b) q4, and (c) q6, respectively. 
(d) The importance value of each plant species (identified to genera) in six testing fields collected from different quadrats in Yuan Ming Yuan. 
Importance values were calculated using the average height and coverages of each plant. (e) The LV and MV for each quadrat.
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Table 2: Plant database for the mathematical model testing. Average height, coverage, Ellenberg indexes of light value and moisture 
value, and unit seed/seedling costs of each plant.

Figure 4: TWINSPAN evaluation for Equation 5 with different n values. The simulated plant community for field type I-III (q7-9) were 
clustered with plant communities in the six testing fields for similarity with adjusted n values in Equation 3, with n = 1(a), 2(b), 3(c), 3.5(d), 4(e), 
respectively. Colored circles highlight different land types (i.e., blue for type I, red for type II, and purple for type III). The y-axis in each graph 
is a qualitative evaluation of the proximity (i.e., the greater the value, the lower the proximity). Two-way indicator species analysis was applied 
to group quadrats by similarity.
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describes how well this community can endure disturbances 
(4). Therefore, plant fitness is much more important than 
biodiversity in terms of establishing a community.

It is worth noting that, the TWINSPAN result did not show an 
absolute matching between the mathematical modeling result 
and the natural plant compositions. Although quadrats in Yuan 
Ming Yuan have been neglected by greenery management 
for years, most of them were cultivated by humans in earlier 
times. It is possible that managers in the past had planted 
popular plants such as Ophiopogon and Setaria, whose 
descendants still flourish in the field, occupying these testing 
fields such as q2, q3, and q4. Therefore, the testing fields 
were not completely mimicking wild circumstances. Another 
possible reason for the incomplete matching is that there are 
numerous possibilities for a plant community to develop in 
a given field. The modeling result of Equation 5 only shows 
one possibility that the plant community could grow in the 
field by considering plant fitness and biodiversity, but it is not 
exclusive. Quadrats in Yuan Ming Yuan that did not match 
the modeling prediction show other feasible patterns for plant 
community development.

What plant species should be included in the plant 
database to train this model is also worth discussing. We 
trained this model with a plant database (Table 2) that only 
includes all the existing plant species in the testing fields. 
Therefore, both the database and the modeling result may 
not be applicable to other fields in Beijing. To apply this model 
to other urban green spaces in Beijing, a database with a 
complete set of plant species in Beijing should be established. 
Furthermore, to fit for the various purposes of urban green 
spaces, the city’s plant database should include more specific 
categorizations in addition to the existing parameters. For 
example, plant species should be specified as local or exotic 
if local preservation is required. It is also noteworthy that, 

although arbors did not appear in the testing fields in this 
simplified model of Equation 5, it is an essential plant type in 
urban greenery (19). However, the plant trait data for arbors 
are rarely and ambiguously described in research studies and 
the official profession guidance handbook (11). Therefore, 
the plant light value (LI) and the plant moisture value (WA) 
for arbors should be collected for further optimization of the 
modeling. This could be achieved through either ecological 
study or transforming the literal descriptions for arbor 
preferences in botanic handbooks (17, 20). 

In addition to optimization of the plant database, the 
model equation itself can be further optimized. Since the 
weight of index ct has not been tested in the current model, 
modifications on ct should also be conducted in further 
research. Due to the limits of time and resources, we were 
unable to conduct a long-term field study to test the accuracy 
of the modeling result. Future research could plant several 
testing fields based on the modeling result followed by 
long-term monitoring of the plant growth and the total cost 
to judge the credibility of this model. Last but not least, in 
order to achieve high eco-sustainability, our model focuses 
the attention on the community biodiversity, plant fitness, and 
managing costs, and neglects social value of green spots. 
But social factors such as ornamental value, cultural value, 
human affinity should also be digitized and incorporated 
into the model in case a balance between sustainability and 
residential pleasure is aimed for. 

Overall, our study established a mathematical model 
that sets a working framework for intellect urban green 
management. Further optimization and iteration of the 
model, such as to parameterize more factors, to optimize the 
parameterization of plant and land traits and the calculation 
of fitness index, to test other types of mathematical models, 
and to assess the credibility of the model using field studies, 

Figure 5: Modeling results using Equation 5, n = 3.5. The importance value of each plant species (identified to genera) on three model 
fields (q7,8,9). Data were drawn from Equation 5, n = 3.5.	
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can be performed on a needed basis. All efforts would lead 
to improved urban ecosystems, and therefore, an improved 
environment. 

MATERIALS AND METHODS
Plant Traits Parameterization
	 Plant light value (LI) and plant moisture value (WA) 
were obtained using the Ellenberg index and subsequently 
minimized by 10 (20-22).

Biodiversity Index (BI)
	 The importance values (IV) of plants were calculated 
based on the method described in the literature (13). For 
arbor species, the importance values were calculated by:

[Eqn 7]

in which the relative coverage (RC) describes the percentage 
of surface covered by one species and the relative abundance 
(RA) describes the rarity of one species compared to others. 

For herbs and shrubs, the IV was calculated by (13):

[Eqn 8]

in which the relative height (RH) is calculated based on the 
literature (13).

The Simpson index (D) is calculated by (13):

[Eqn 9]

in which xi is the importance value of species i, n is the number 
of plant species, and N is the sum of all IV. When used in the 
model, the returning value of the biodiversity index is:

[Eqn 10]

In the model, BI is calculated using the vegan (version 2.6-2) 
function in the R package (24).

Land Traits Parameterization
In developing the Light land value (LV) calculation, 

we made the following assumptions: 1) the land shape is 
assumed to be a perfect rectangle; 2) the lands are barren 
(no blockings within the land); 3) two parallel sides of the land 
are paralleled to a meridian line; 4) buildings beside a piece 
of land are perfect cuboids; 5) buildings beside a piece of land 
are right next to the sides of the land; 6) clouds are negligible; 
7) the light intensity level of each day is proportional to that 
of the summer solstice; 8) the time interval between sunrise 
and noon is equal to that between noon and sun-set; 9) the 
sun is moving at a constant angular speed; 10) the building’s 
height is shorter than the land’s length and width; 11) the land 
is on the northern hemisphere. Additionally, the terminology 
we defined during the calculation is presented in Table 3.

The light intensity level is defined as multiplying the area 
that receives sunlight by the length of time the sunshine 
reaches it. The area that is covered by the shadows can be 
calculated using:

[Eqn 11]

where xe is the height of the east wall’s shade (EWS), ye is the 

distance between the EWS and the south wall, ys is the height 
of the south wall’s shade (SWS), xs is the height of the SWS, 
L is the measurement of the east-west length of two sides of 
the land, and S is the measurement of the north-south length 
of two sides of the land.

The two bold lines represent a vertical rod and its shadow 
at a certain time. The two thin, black dash lines are the length 
of the shadow’s north-south (y) and east-west (x) components, 
respectively. The coordinate of the shadow’s terminal point is 
(x,y). θ0 is the solar altitude at this moment, while θ1 and θ2 are 
the altitude angle of y and x respectively, where θ1 is latitude 
of the target land, θ2 is the equivalent of ωt, and x and y can 
be calculated using the equations:

[Eqn 12]

[Eqn 13]

Two conditions in calculating the light intensity level of a 
land with one building blocking the sun are shown below:

[Eqn 14]

[Eqn 15]

Amongst the two equations,

[Eqn 16]

[Eqn 17]

[Eqn 18]

[Eqn 19]

[Eqn 20]

Three conditions in calculating the light intensity level of a 
land with more than one building blocking the sun are shown 
below:

[Eqn 21]

[Eqn 22]

[Eqn 23]

Amongst the three equations,

[Eqn 24]

[Eqn 25]
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Table 3: Table 3. Terminology for LV calculation. Calculation methods for some terms are also presented.
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[Eqn 26]

[Eqn 27]

[Eqn 28]

[Eqn 29]

Land Moisture Value (MV)
We set the climate parameter (CP) as 0.2 for regions with 

annual precipitation of more than 800 mm, 0 for regions with 
annual precipitation within a range of 400 to 800 mm, and 
-0.2 for regions with annual precipitation below 400 mm. 
We set the irrigation equipment parameter (IEP) as 0.9 (for 
lands with automatic irrigation equipment), 0.5 (for lands with 
irrigation equipment that need manual work), and 0.2 (for 
lands with no irrigation equipment). We set the natural water 
sources parameter (NWP) as 0.3 for wetlands and marshes, 
0.2 for lands with a water source (i.e., lakes, ponds, rivers, 
etc.) within 10 meters reach, 0.1 for lands with a water source 
within 100 meters reach, and 0 for lands with no adjacent 
water sources.

The MV of a piece of land was calculated as:

[Eqn 30]

R Language Programming
We established the mathematical model based on the R 

language (see Appendix 1 for the codes). The two packages 
that were used in this model are vegan (version 2.6-2) for 
biodiversity index calculation and Rdonlp2 (version 3042.11/
r6080) for nonlinear programming (18,24).

Plant Database
All the plant traits data for the 16 plant species used in this 

study were acquired from a botanic website (www.iplant.cn/) 
and two handbooks except the unit coverages (17, 20, 24). 
The unit cost of seeds/seedlings was acquired from TaoBao 
(Table 2).

Quadrat Survey
Six quadrats, each with an area roughly about 750 dm2, 

were selected in Yuan Ming Yuan. These quadrats were 
enclosed by a thin rope during the survey to discriminate the 
boundary (Figure 3a-c). Plant coverage data were drawn 
from this process. After identifying and recording each plant 
species (genera), the coverage of plant species that grow in 
colonies was calculated by measuring the length and width 
of the area each species covered followed by the calculation 
of the covered area. Individual plants were counted by 
measuring the diameter of their shadow area, then calculating 
each plant's unit coverage.

Two-Way Indicator Species Analysis
Two-way indicator species analysis (TWINSPAN) was applied 
to evaluate the similarities between the testing fields and their 
corresponding mathematical modeling results. The R code 
for TWINSPAN programming was acquired from GitHub (26).
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Appendix 1. R language programming codes 

library(vegan) 

library(Rdonlp2) 

d.species <- read.csv("species listy.csv",header=TRUE,stringsAsFactors=FALSE)  

#"species listy.csv" is the document of plant database shown in Table 2 

Scientific<-d.species[,"Scientific"] 

Type<-d.species[,"Type"] 

Height <- d.species[,"Height"] 

Coverage<-d.species[,"Coverage"] 

Light_v<-d.species[,"Light_v"] 

Moisture_v<-d.species[,"Moisture_v"] 

Cost<-d.species[,"Cost"] 

 

#Preparation functions 

fc <-function(s,ns){ #turn original data into vectors 

  n<-0 

  for (i in s){ 

    n<-n+1 

    a<-strsplit(i,split=",") 

    a<-as.vector(a) 

    ns[n]<-a 

  } 

  return(ns) 

} 

fn <-function(s,element){ #find the place of an element in a list/vector 

  n<-0 

  for (i in s){ 

    n<-n+1 
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    if (i==element) 

      return (n) 

  } 

} 

 

#Categorize plant species into arbor, shrub, and herb 

Arbor_s<-c();Shrub_s<-c();Herb_s<-c(); 

k=0 

for (i in Type){ 

  k=k+1 

  q=Scientific[[k]] 

  if (i=="arbor"){ 

    Arbor_s <-c(Arbor_s,q) 

  } 

  else if (i=="shrub"){ 

    Shrub_s <-c(Shrub_s,q) 

  } 

  else if (i=="herb"){ 

    Herb_s <-c(Herb_s,q) 

  } 

} 

 

#Acquire the quantity of each type 

plant<- c(Scientific) 

total<-length(plant) 

arbor<-length(Arbor_s) 

shrub<-length(Shrub_s) 

herb<-length(Herb_s) 
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#Land parameterization 

dm<-c(750);d_sh<-dm #Land area (in dm^2) 

dd1=4.1;dd2=1.9;dd3=3 #The aridity of each field type 

 

#Land information: light value 

h=50 #Height of the adjacent building (in dm) 

S=30 #The east-west side length of the adjacent building (in dm) 

L=25 #The north-south side length of the adjacent building (in dm) 

al=2/9 #The latitude of Beijing 

alpha=pi/2-(al-pi*47/360) #The altitude of the sun at the noon of the summer solstice 

w=pi/12 #The angular speed of the sun 

#The area function for different types of walls (see Materials and Methods) 

Asouthp <-function(x){ 

  L*S-0.5*(L^2)*tan(w*x)/tan(alpha) 

} 

Asoutha <-function(x){ 

  L*S-0.5*(2*L-h/tan(w*x))*h/tan(alpha) 

} 

Acorner <-function(x){ 

  L*S-0.5*((2*L-h/(tan(w*x)))*h/tan(alpha)+(2*S-h/tan(alpha))*h/tan(w*x)) 

} 

c=atan(h/L)/w 

p=6-10^(-12) 

q=10^(-12) 

Ec=(integrate(Acorner,c,p)) 

Es=(integrate(Asoutha,c,p)) 

Esp=(integrate(Asouthp,q,c)) 
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LV1=(Esp[[1]])/(S*L*6) #land light value for field type I 

LV2=1 #land light value for field type II 

LV3=(Ec[[1]]+Es[[1]])/(2*S*L*6) #land light value for field type III 

 

 

#Nonlinear programming 

HS_s<-c(Herb_s,Shrub_s); #combining herb and shrub species 

cod_hs<-c() #Code for herb/shrub species 

for (i in Herb_s){ 

  t<-fn(Scientific,i) 

  cod_hs<-c(cod_hs,t) 

} 

for (i in Shrub_s){ 

  t<-fn(Scientific,i) 

  cod_hs<-c(cod_hs,t) 

} 

cvr_hs<-c() #Coverage for each herb/shrub species 

ht_hs<-c() #Average height for each herb/shrub species 

for (i in cod_hs){ 

  t=Coverage[i] 

  p=as.numeric(Height[i]) 

  cvr_hs<-c(cvr_hs,t) 

  ht_hs<-c(ht_hs,p) 

} 

 

#Modeling for the field type I 

Test1 = function(x){ #Objective function 

  x<-abs(x) 
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  rh<-ht_hs*x/sum(ht_hs)*100 

  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 #calculate the importance value for each species 

  sip=diversity(p,"simpson") #calculate the Simpson biodiversity index of the plant community 

  b<-0 

  ct<-0 

  ft<-0 

  for (i in cod_hs){ 

    b=b+1 

    li=as.numeric(Light_v[[i]])/10 

    wa=as.numeric(Moisture_v[[i]])/10 

    ft=ft+x[b]*cvr_hs[b]/d_sh*(sqrt(2)-sqrt((li-LV1)^2+(wa-dd1/10)^2))/sqrt(2) #calculating the 

fitness index 

    ct=ct+x[b]*Cost[[i]] 

  } 

  ct=1-ct/d_sh/(max(Cost[cod_hs]/Coverage[cod_hs])) #calculating the cost index 

  mi=(ft^3.5)*sip^(3.5) #n=3.5 

  return(-mi)  

} 

hs<-herb+shrub 

p1 = rep(10,hs) #set initial iteration values 

par1.l = rep(0,hs); #set lower limits 

par1.u = rep(10000,hs); #set upper limits 

A_1 = matrix(cvr_hs,1,byrow=TRUE); #set linear restrictions 

lin1.l = c(d_sh); lin1.u = c(d_sh); #set linear limits (both equals to the total area) 

#Nonlinear programming 

T1 = donlp2(p1,Test1,par.u=par1.u,par.l=par1.l,A_1,lin.l=lin1.l,lin.u=lin1.u) 

#testing 
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pt1 = function(x){ 

  x<-abs(x) 

  s<-0 

  for (i in 1:length(x)){ 

    if(x[i]>=1){ 

      s=s+ht_hs[i] 

    } 

  } 

  rh<-c(1:length(x)) 

  for (i in 1:length(x)){ 

    if (x[i]>=1){ 

      rh[i]<-ht_hs[i]/s*100 

    } 

    else{ 

      rh[i]<-0 

    } 

  } 

  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 #calculating the importance value 

  return(p) 

} 

 

q1<-pt1(T1$par)*2 #output the importance value of each species 

 

#Modeling for the field type II 

Test2 = function(x){ 

  x<-abs(x) 

  rh<-ht_hs*x/sum(ht_hs)*100 
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  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 

  sip=diversity(p,"simpson") 

  b<-0 

  ct<-0 

  ft<-0 

  for (i in cod_hs){ 

    b=b+1 

    li=as.numeric(Light_v[[i]])/10 

    wa=as.numeric(Moisture_v[[i]])/10 

    ft=ft+x[b]*cvr_hs[b]/d_sh*(sqrt(2)-sqrt((li-LV2)^2+(wa-dd2/10)^2))/sqrt(2) 

    ct=ct+x[b]*Cost[[i]] 

  } 

  ct=1-ct/d_sh/(max(Cost[cod_hs]/Coverage[cod_hs])) 

  mi=(ft^3.5)*sip^(3.5) 

  return(-mi)  

} 

hs<-herb+shrub 

p2 = rep(10,hs) 

par2.l = rep(0,hs); 

par2.u = rep(10000,hs) 

A_2 = matrix(cvr_hs,1,byrow=TRUE) 

lin2.l = c(d_sh); lin2.u = c(d_sh)   

#Nonlinear programming 

T2 = donlp2(p2,Test2,par.u=par2.u,par.l=par2.l,A_2,lin.l=lin2.l,lin.u=lin2.u) 

#testing 

pt2 = function(x){ 

  x<-abs(x) 
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  s<-0 

  for (i in 1:length(x)){ 

    if(x[i]>=1){ 

      s=s+ht_hs[i] 

    } 

  } 

  rh<-c(1:length(x)) 

  for (i in 1:length(x)){ 

    if (x[i]>=1){ 

      rh[i]<-ht_hs[i]/s*100 

    } 

    else{ 

      rh[i]<-0 

    } 

  } 

  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 

  return(p) 

} 

q2<-pt2(T2$par)*2 

 

#Modeling for the field type III 

Test3 = function(x){ 

  x<-abs(x) 

  rh<-ht_hs*x/sum(ht_hs)*100 

  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 

  sip=diversity(p,"simpson") 
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  b<-0 

  ct<-0 

  ft<-0 

  for (i in cod_hs){ 

    b=b+1 

    li=as.numeric(Light_v[[i]])/10 

    wa=as.numeric(Moisture_v[[i]])/10 

    ft=ft+x[b]*cvr_hs[b]/d_sh*(sqrt(2)-sqrt((li-LV3)^2+(wa-dd3/10)^2))/sqrt(2) 

    ct=ct+x[b]*Cost[[i]] 

  } 

  ct=1-ct/d_sh/(max(Cost[cod_hs]/Coverage[cod_hs])) 

  mi=(ft^3.5)*sip^(3.5) 

  return(-mi)  

} 

hs<-herb+shrub 

p3 = rep(10,hs) 

par3.l = rep(0,hs); 

par3.u = rep(10000,hs) 

A_3 = matrix(cvr_hs,1,byrow=TRUE) 

lin3.l = c(d_sh); lin3.u = c(d_sh)   

#Nonlinear programming 

T3 = donlp2(p3,Test3,par.u=par3.u,par.l=par3.l,A_3,lin.l=lin3.l,lin.u=lin3.u) 

#testing 

pt3 = function(x){ 

  x<-abs(x) 

  s<-0 

  for (i in 1:length(x)){ 

    if(x[i]>=1){ 
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      s=s+ht_hs[i] 

    } 

  } 

  rh<-c(1:length(x)) 

  for (i in 1:length(x)){ 

    if (x[i]>=1){ 

      rh[i]<-ht_hs[i]/s*100 

    } 

    else{ 

      rh[i]<-0 

    } 

  } 

  rd<-cvr_hs*x/sum(cvr_hs*x)*100 

  p<-(rh+rd)/200 

  return(p) 

} 

q3<-pt3(T3$par)*2 


