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INTRODUCTION
Greenhouse gas emissions are main contributors to 

climate change and global warming. Emission of the most 
abundant greenhouse gasses, specifically carbon dioxide 
(CO2), has grown by almost 6 times in the past 70 years (1). 
The current concentration of CO2 in the atmosphere is over 
400 parts per million (ppm), 30 % higher than the highest 
CO2 level prior to the industrial revolution (2). The main 
sources of CO2 emission include human transportation, 
energy production, and commercial heating and cooling 
(3). Climate change and global warming have led to both 

widespread ecological damage to plants and animals as well 
as significant socio-economic losses. In the United States 
alone, the total cost of the 332 weather and climate-related 
disasters sustained since 1980 exceeds $2 trillion, according 
to a recent estimate by the National Centers for Environmental 
Information (4). Globally, according to estimates by the World 
Bank, climate change may push over 130 million people into 
poverty by 2030 and cause over 200 million people to migrate 
within their own countries by 2050 (5).

Carbon capture and conversion aim to reduce atmospheric 
CO2 levels and mitigate climate change (6, 7). According to 
estimates by the Center for Climate and Energy Solutions, 
carbon capture and storage technologies can capture more 
than 90 % of CO2 emissions from power plants and industrial 
facilities and reduce 14 % of global greenhouse gas emissions 
by 2050 (3). 

Several methods exist for carbon capture focused on 
using absorption, distillation, adsorption, and membrane-
based technologies (8). Each technology has advantages 
and disadvantages. Absorbents represent a more advanced 
technology with a high CO2 removal rate but suffer from high 
regeneration costs and corrosion. Distillation is similarly 
beneficial for its strong CO2 removal capacity, but also has 
the problem of prohibitive costs. Membranes are cheap and 
easy to operate but have high material costs and are not 
ideal for elevated temperatures. A variety of adsorbents are 
available, but adsorption is sensitive to impurities within the 
gas (8). Innovative technologies with fewer drawbacks that 
function strongly under different reaction conditions must be 
developed, including the use of metal-organic frameworks 
(MOFs). 

MOFs are promising materials for carbon capture and 
conversion due to their repetitive lattice structures, ultra-high 
surface areas, and significant CO2 selectivity (9, 10). MOFs 
consist of metallic clusters and organic ligands bonded to 
each other in a crystal lattice (11). They capture carbon mainly 
through physical, instead of chemical, means by “trapping” 
processes that require lower energy input for regeneration. 
MOFs can also have open metal sites, which are unbonded 
parts of the metal clusters to allow for greater interaction 
between the MOF and CO2. In addition, MOFs are inherent 
catalysts and convert the CO2 they capture into useful carbon 
products, such as methanol and acetic acid, through electric 
and photic means (11). Altogether, MOFs are a more energy-
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efficient carbon capture and conversion technology compared 
to other methods because they can achieve both steps in this 
process. 

The process of researching and synthesizing MOFs is 
expensive, leading to a lack of large-scale manufacturing 
and limited applications in industry (17, 18). MOFs continue 
to represent a  promising  energy-efficient pathway to tackle 
the growing conundrum around increased  CO2  emissions 
(8). However, the MOF design space is large due to the great 
versatility of MOFs (such as their chemistry, geometry, percent 
porosity, size of pores, etc.)  and the different combinations 
of reaction conditions that can impact capture selectivity 
and conversion (14). These variables render experimental 
examination for determining the impact of every MOF design 
features difficult (19). In addition, some MOFs get used up or 
decay over time and must be regenerated or replaced during 
use, which has further added to challenges using MOFs (8). 
These considerations of cost and time make searching for 
MOFs with specific properties using experimental techniques 
largely infeasible. In contrast, computational modeling of 
MOFs can be useful for the discovery of promising new 
materials for CO2  capture in a cost-effective manner (20). 
Computational modeling can efficiently investigate the 
properties of new materials beyond the limits of experimental 
techniques and can be used to support, rationalize, and guide 
experimental efforts (21).  For example, through developing 
computational models and neural networks, a subset of 
machine learning that mimics biological neuron signals and 
relies on training data to learn and improve their accuracy over 
time, researchers can analyze features of a MOF structure to 
predict its efficacy before costly synthesis and help reduce 
the development time for new MOFs (22). 

The studies existing in the literature suggest that different 
reaction conditions, such as pressure and temperature, 
influence the selectivity and conversion rate of CO2 capture 
and conversion by MOFs while the optimal conditions 
have not yet been fully characterized (8). In our study, we 
computationally analyzed MOF carbon capture selectivity 
and conversion under different reaction conditions using data 

compiled from Al-Rowaili et al. (12). Some MOF materials, 
due to their structural flexibility, may undergo changes within 
their structures and result in “confined” CO2 adsorption 
when exposed to external influences, such as pressure and 
temperature (12). We tested the hypothesis that pressure 
and temperature affect the efficacy of MOF carbon capture 
and conversion. Using Python programming, we performed 
empirical regression between the reaction conditions, 
including pressure and temperature, and selectivity and 
conversion ratios. Pressure was significantly correlated in 
a convex quadratic model with carbon capture selectivity, 
and temperature was significantly correlated in a concave 
quadratic model with carbon conversion. Our study contributes 
to understanding optimal MOF reaction conditions for carbon 
capture and conversion through computational modeling, 
increasing the potential use of MOFs in industry. 

RESULTS
The efficacy of CO2 selectivity and conversion is known 

to vary depending on the chemical and physical properties 
of the MOFs and the reaction conditions (23). To examine the 
impact of pressure and temperature on both the selectivity 
and conversion steps, we analyzed performance data 
collected by Al-Rowaili et al (12), a dataset consisting of 103 
observations using a series of MOFs designs. After filtering 
out observations with incomplete information of pore size, 
reaction conditions, or performance ratios, 14 observations 
remained for the analysis of selectivity and 54 for the 
analysis of conversion. Linear, exponential, logarithmic, and 
quadratic fits were all tested to determine the relationship 
between reaction conditions (pressure and temperature) and 
performance. 

Pressure had a significant convex up quadratic relationship 
with selectivity (p=0.05), while the link between temperature 
and selectivity was not significant (Table 1). Most of the 
MOFs achieved a selectivity of over 90%. However, when 
the pressure level was in the middle range around 6-8 atm, 
the selectivity dropped to a low level of 30-70% (Figure 
1a). Similarly, when the temperature was around 50°C, the 

Table 2. Temperature influences carbon conversion rate.

Note: Quadratic functions were generated with x = pressure or 
temperature and y = conversion rate (%). Coefficients are indicated 
outside of parentheses and Student’s t-values in parentheses with  
***p<0.01. 

Table 1. Pressure influences CO2 selectivity.

Note: Quadratic functions were generated with x = pressure or 
temperature and y = selectivity (%). Coefficients are indicated 
outside of parentheses and Student’s t-values in parentheses with 
**p<0.05, ***p<0.01. 
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selectivity dropped to 30-70%, although the relationship was 
not significant (Figure 1b). Our results showed that, in a 
quadratic equation, with 14 observations in the sample from 
Al-Rowaili et al. (12), pressure was significantly associated 
with selectivity at the 5 % level with a coefficient equaling 
-13.12 (t=-2.44) and the squared term of pressure was also 
significantly associated with a selectivity at the 5% level with a 
coefficient equaling 1.04 (t=2.57). The constant of this equation 
was 109.9, significant at the 1 % level (t=7.24). Alterations in 
pressure explained over one-third of the variance observed in 
selectivity (R²=0.376). Meanwhile, the associations between 
temperature or the squared term of temperature and selectivity 
were not significant (t=0.177 and t=-0.055, respectively) and 
the alteration in temperature explained little of the variance 
observed in selectivity (R²=0.031).

Temperature had a significant impact on the ability of MOFs 

to convert CO2 into other carbon products, such as ethanol, 
methanol, and cyclic carbonates, while the association 
between pressure and conversion was not significant (Table 
2). More specifically, temperature had a concave down 
quadratic relationship (p=0.01). In the 54 observations used 
to analyze conversion, the conversion ratio ranged from 
approximately 40% to 100% for most samples. Several 
observations had low conversion ratios around zero (Figure 
2). The coefficient between temperature and conversion was 
1.245, significant at the 1% level (t=3.55) and the coefficient 
between the squared term of temperature and conversion 
was -0.0071, also significant at the 1% level (t=-3.20). The 
constant of the quadratic regression was 38.44, significant at 
the 1% level (t=2.97). Temperature explained around 20% of 
the variance of conversion (R² = 0.210). 

Figure 2. Temperature, not pressure, influences carbon conversion rate. Scatter plots showing conversion rate (%) as a function 
of a) pressure (atm) and b) temperature (oC) in 54 MOF samples, fitted with quadratic curves. A) {conversion=84.24+0.65*pressure-0.01* 
pressure sq. and p-value>0.10}, B) {conversion=28.44+1.25*temperature-0.01*temperature sq. and p-value<0.01}. 

Figure 1. Pressure, not temperature, influences selectivity for CO2. Scatter plots showing selectivity (%) as a function of a) pressure 
(atm) and b) temperature (oC) in 14 MOF samples, fitted with quadratic curves. A) {selectivity=109.9-13.12*pressure+1.04*pressure sq. and 
p-value<0.05}, B) {selectivity=72.82+0.22*temperature and p-value>0.10}. 
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DISCUSSION
The influence of different reaction conditions, such as 

pressure and temperature, on the selectivity and conversion 
rate of CO2 by MOFs has not been fully characterized to 
date. Here, we analyzed a database presented as Table 1 
in Al-Rowaili et al. (12) consisting of MOF characteristics, 
reaction conditions, and capture outcomes, to determine 
whether pressure or temperature correlated with CO2 
selectivity or conversion rates. Diverse MOFs were included 
such as zeolitic imidazolate frameworks, ZnMOFs, University 
of Oslo  MOFs (Zr6O4(OH)4  + 1,4-benzodicarboxylic 
acid),  polymer integrated MOFs, Sr-MOFs, Cu-MOFs, and 
many others (12). Pressure was significantly correlated in 
convex quadratic models for the selective capture of carbon 
and temperature was significantly correlated in a concave 
quadratic model for carbon conversion. Our findings indicated 
that the reaction conditions of pressure and temperature 
affected the ability and efficacy of MOFs for carbon capture 
through CO2 selectivity and conversion. For a variety of MOF-
based materials in the studied samples with different pore 
sizes for the tested durations, the optimal reaction conditions 
were around 80°C and at 0-1 atm or 11-12 atm of pressure (R² 
= 0.376 and 0.210, respectively). 

Our analysis coincides with previous studies that 
showed changes in MOF CO2 selectivity and conversion 
reacting at different pressures and temperatures (8). Due 
to their cavity size and surface area, MOFs have a dynamic 
structure. Variability in reaction conditions can alter the 
structure, resulting in “confined” CO2 adsorption (12). At low 
pressure, the adsorption capability of CO2 on MOFs is related 
to the adsorption heat (24), and at high pressure, selectivity 
depends on pore size. For synthetic MOFs, the pore sizes and 
channels can reach nanometers and angstroms (11). As the 
interaction between MOFs and CO2 at low pressure is relatively 
weaker, MOFs with high CO2  uptake at low pressures can 
help facilitate an effective CO2 capture process for enclosed 
localities (11).  MOFs can have high CO2 storage capacity at 
room temperature (26). However, strong bonds between CO2 
molecules and the adsorbents to achieve selectivity typically 
require high adsorbent regeneration temperatures (27). As 
the adsorption capacity and saturated adsorption capacity 
decrease with an increase in adsorption temperature, low 
adsorption temperature can help obtain a high CO2 adsorption 
capacity (28). 

Several limitations of the current study are worth noting. 
First, samples sizes were low. After dropping unusable data 
due to incomplete information of pore size, reaction conditions 
or performance ratios, only 14 data points were left for 
selectivity tests and 54 data points for conversion tests. While 
the remaining observations still included a range of different 
MOF-based materials with different pore sizes and conditions 
of reaction with no pattern of dominance of any specific MOF 
types, the datasets may not be representative of diverse 
experimental parameters and may be skewed by a few 

observations with extreme values. Furthermore, we could not 
divide the samples into different sub-groups to capture other 
common features, such as pore size or MOF-based materials 
due to the limited number of observations. The R² values of 
0.376 and 0.210, which explains the share of the variation 
of selectivity and conversion explained by the changes in 
temperature and the changes in pressure, respectively, were 
relatively low. This suggested the selectivity and conversion 
of carbon dioxide are likely to be determined by other factors 
besides pressure and temperature. Second, the measures 
for selectivity and conversion were not standardized across 
all points as the gas mixture for selectivity and the chosen 
product for conversion varied. This may limit the comparison 
across the observations in the sample. Third, different MOF 
chemistries were not considered during testing and specific 
arrangements for the reactions to achieve the stated results 
were not controlled. This may not capture the differences in 
the ideal reaction conditions for other specific MOF materials. 

Future research should focus on testing more MOF 
characteristics, such as pore size, number of functional 
groups, and open metal sites, as well as the interplay between 
the different MOF characteristics and reaction conditions, 
including the concentrations of reactants, products, and 
catalysts. Analyses of MOF chemistry and structure should 
also be implemented with sophisticated models of data 
analytics, such as machine learning. Finally, it would be useful 
to test the results on CO2 selectivity and conversion jointly to 
reach the ultimate goal of developing specialized and efficient 
MOFs for carbon capture.

MATERIALS AND METHODS
Data

This study analyzed data previously compiled by and 
presented as Table 1 in Al-Rowaili et al (12). Observations 
included characteristics of the MOFs, reaction conditions, 
and performance of the MOFs under those conditions. MOF 
properties included the MOF name and notes detailing the 
pore size in angstroms. Reaction conditions were temperature 
(°C), pressure in atmospheres (atm), and the amount of time 
(hr) the reaction took place. Pressure and temperature were 
the focus on this study. Performance was summarized by three 
measures: i) CO2 selectivity, ii) conversion, and iii) turnover 
frequency. CO2 selectivity and conversion were used in this 
study, while turnover frequency was dropped due to data 
limitations. Selectivity, reported as a percentage, measured 
how well the MOFs trapped CO2 with relationship to other 
gasses. Conversion measured the percent of CO2 that was 
converted into a different product, such as cyclic carbonates 
and methanol (29, 30). 

Data points without complete data for selectivity or 
conversion percentages were dropped. For selectivity, 
only data points that included MOF pore size, reaction 
temperature, reaction pressure, duration of reaction (time), 
and selectivity were included, amounting to 14 observations. 
This selection criteria were applied to conversion data with 
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conversion values replacing selectivity, amounting to 54 
observations. The data, as detailed in Al-Rowaili et al in Table 
1 of their publication, included various MOFs, such as zeolitic 
imidazolate frameworks, ZnMOFs,  University of Oslo  MOFs 
(Zr6O4(OH)4 + 1,4-benzodicarboxylic acid), polymer integrated 
MOFs, Sr-MOFs, and Cu-MOFs, with pore sizes ranging from 
0.14 to 36 angstroms and tested with different substrates, 
including epichlorohydrin, styrene oxide, and glycidyl phenyl 
ether.

Analysis
All data analysis was conducted using Python version 

3.9.12 software. Linear and quadratic regressions were 
performed for all variables x =  {temperature, pressure} and y 
=  {selectivity, conversion} using the equations below:

y = a + bx
y = a+ bx + cx² 

where y stands for the dependent variables, selectivity and 
conversion; x stands for the independent variables, pressure 
and temperature; a stand for the constant, b stands for the 
coefficient of the independent variable, and c stands for the 
coefficient of the squared term of the independent variable. For 
each regression, the coefficients were tested for significance 
using the student’s t-test, and the R-squared value was 
calculated to determine the degree of variability explained 
by the models. We use t-statistics, defined as the ratio of 
the departure of the estimated value of a parameter from its 
hypothesized value to its standard error, to support or reject 
the null hypothesis that the coefficient of a given independent 
variable is significant at 1%, 5% or 10%.
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APPENDIX
Data.csv is taken from Table 1 in Al-Rowaili et al (12). The following code takes the data, cleans it for inconsistencies, and 

then runs all the regressions relevant to this paper. Graphs to visualize results are also generated. Additional explanations on 
specifics of codes are commented throughout the code below.

#!/usr/bin/env python

# coding: utf-8

# Imports necessary packages

# In[1]:

import pandas as pd 

import numpy as np

import statsmodels.api as sm

from sklearn.linear _ model import LinearRegression

import matplotlib.pyplot as plt

# Reads in data and cleans out inconsistent character usage within the data and drops datapoints with 

missing information. Regenerates squared terms for later use in regression.

def clean(str):

    return str.replace(">", "")

# In[2]:

full = pd.read _ csv('Data.csv')

# In[3]:

sel = pd.read _ csv('Data.csv', usecols = ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)', 

'Selectivity (%)'])

conv = pd.read _ csv('Data.csv', usecols = ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)', 

'Conversion (%)'])

# In[4]:

sel = sel.replace('–')

sel = sel.dropna()

sel = sel.drop([2, 41, 42])

conv = conv.replace('–')

conv = conv.dropna()

conv = conv.drop([2, 41, 42, 43, 67, 68, 98])

sel['Pore Size (A)'] = sel['Pore Size (A)'].map(clean)

sel['Selectivity (%)'] = sel['Selectivity (%)'].map(clean)

conv['Pore Size (A)'] = conv['Pore Size (A)'].map(clean)

conv['Conversion (%)'] = conv['Conversion (%)'].map(clean)

sel = sel.astype('float64')

conv = conv.astype('float64')

for col in sel.columns:

    sel[col + '2'] = np.square(sel[col])

for col in conv.columns:

    conv[col + '2'] = np.square(conv[col])

# Runs linear regression and visualizes results for selectivity variable

# In[5]:

plt.scatter(sel['Pore Size (A)'], sel['Selectivity (%)'])

# In[6]:

sel.columns



7 May 2023  |  VOL 6  |  8Journal of Emerging Investigators  •  www.emerginginvestigators.org

# In[7]:

for col in ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)']:

    x = sel[col]

    y = sel['Selectivity (%)']

    model = sm.OLS(y, sm.add _ constant(x))

    results = model.fit()

    x _ pred = np.linspace(sel[col].min(), sel[col].max(), 75)

    y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred})['x']))

    plt.plot(x _ pred, y _ pred)

    print(results.summary())

    plt.scatter(sel[col], y)

    plt.title(col + ' vs selectivity')

    plt.show()

# Runs quadratic regression and visualizes results for selectivity variable

# In[8]:

for col in ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)']:

    x = sel[[col, col + '2']]

    y = sel['Selectivity (%)']

    model = sm.OLS(y, sm.add _ constant(x))

    results = model.fit()

    x _ pred = np.linspace(sel[col].min(), sel[col].max(), 75)

    y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _	

	 pred)})[['x', 'x2']]))

    plt.plot(x _ pred, y _ pred)

    print(results.summary())

    plt.scatter(sel[col], y)

    plt.title(col + ' vs selectivity')

    plt.show()

# Runs linear regression and visualizes results for conversion variable

# In[9]:

for col in ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)']:

    x = conv[col]

    y = conv['Conversion (%)']

    model = sm.OLS(y, sm.add _ constant(x))

    results = model.fit()

    x _ pred = np.linspace(conv[col].min(), conv[col].max(), 75)

    y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred})['x']))

    plt.plot(x _ pred, y _ pred)

    print(results.summary())

    plt.scatter(conv[col], y)

    plt.title(col + ' vs conversion')

    plt.show()

# In[10]:

# Runs quadratic regression and visualizes results for conversion variable

for col in ['Pore Size (A)', 'Temp (°C)', 'Pressure (atm)', 'Time (hr)']:

    x = conv[[col, col + '2']]

    y = conv['Conversion (%)']

    model = sm.OLS(y, sm.add _ constant(x))

    results = model.fit()

    x _ pred = np.linspace(conv[col].min(), conv[col].max(), 75)

    y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _
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	 pred)})[['x', 'x2']]))

    plt.plot(x _ pred, y _ pred)

    print(results.summary())

    plt.scatter(conv[col], y)

    plt.title(col + ' vs conversion')

    plt.show()

# Generates more detailed graphs used in this paper

# In[11]:

col = 'Pressure (atm)'

x = sel[[col, col + '2']]

y = sel['Selectivity (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(sel[col].min(), sel[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _ pred)})

	 [['x', 'x2']]))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(sel[col], y)

plt.xlabel('Pressure (atm)')

plt.ylabel('Selectivity for CO2 (%)')

plt.show()

# In[12]:

col = 'Temp (°C)'

x = sel[col]

y = sel['Selectivity (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(sel[col].min(), sel[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred})['x']))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(sel[col], y)

plt.xlabel('Temp (°C)')

plt.ylabel('Selectivity for CO2 (%)')

plt.show()

# In[13]:

col = 'Time (hr)'

x = sel[[col, col + '2']]

y = sel['Selectivity (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(sel[col].min(), sel[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _ pred)})

	 [['x', 'x2']]))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(sel[col], y)

plt.xlabel('Time (hr)')

plt.ylabel('Selectivity for CO2 (%)')

plt.show()
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# In[14]:

col = 'Pressure (atm)'

x = conv[[col, col + '2']]

y = conv['Conversion (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(conv[col].min(), conv[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _ pred)})

	 [['x', 'x2']]))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(conv[col], y)

plt.xlabel('Pressure (atm)')

plt.ylabel('Conversion Rate (%)')

plt.show()

# In[15]:

col = 'Time (hr)'

x = conv[col]

y = conv['Conversion (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(conv[col].min(), conv[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred})['x']))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(conv[col], y)

plt.xlabel('Time (hr)')

plt.ylabel('Conversion (%)')

plt.show()

# In[16]:

col = 'Temp (°C)'

x = conv[[col, col + '2']]

y = conv['Conversion (%)']

model = sm.OLS(y, sm.add _ constant(x))

results = model.fit()

x _ pred = np.linspace(conv[col].min(), conv[col].max(), 75)

y _ pred = results.predict(exog = sm.add _ constant(pd.DataFrame({'x': x _ pred, 'x2' : np.square(x _ pred)})

	 [['x', 'x2']]))

plt.plot(x _ pred, y _ pred)

print(results.summary())

plt.scatter(conv[col], y)

plt.xlabel('Temp (°C)')

plt.ylabel('Conversion Rate (%)')

plt.show()


