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increases the control producers have over the sound they 
record and produce. Furthermore, in situations involving 
disaster response, manufacturing and education, the impact 
of noise can induce delays and errors, affecting real outcomes 
in public safety, production, and performance (2). For these 
reasons, noise reduction is a quintessential tool. 

Industry-standard filter methods like Butterworth filtering 
and Wiener Filtering are prevalent methods for noise 
reduction (3, 4). More modern Artificial Intelligence (AI)-
based Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) are also in development and use (5). 
However, traditional filters like the Butterworth and Wiener 
are not adequately versatile. Versatility refers to the ability 
of a filtering technique to adapt to a wide range of signal 
characteristics and noise profiles encountered in different 
applications. AI-intensive methods, on the other hand, can be 
time and resource intensive (4, 6).

As is evident by the definition of noise, it is subjective to 
what the relevant information content is. In different contexts, 
humans can intuitively define and identify what may or may not 
be relevant. For instance, in an audio call, anything other than 
human speech is considered noise. However, in a program 
built to identify a song, anything other than music, including 
human speech, is considered noise. Therefore, the definition 
of noise is dynamic and contextual. To a computer, the task 
of identifying noise as separate from sound in a compound 
audio sample is a complex challenge.

The algorithms used in this study were two spectral 
subtraction noise reduction algorithms: stationary and non-
stationary. These algorithms define noise using estimated 
noise thresholds, or gates, for different frequency channels. 
This prediction assumes the desired sound signals are 
uncorrelated with the noise signals and dominant. It then refers 
to these dominant signals to calculate the noise gates. The 
noise reduction algorithms used in this study are variations 
of spectral gating or spectral subtraction algorithms. They 
rely on the additive, and consequently subtractive, property 
of sound signals and essentially subtract the noise from the 
compound signal. This requires the identification of the ‘noise’ 
signal, which is done independently in the different frequency 
bands.

Average signal and noise spectra are estimated in these 
separate parts of the signal and subtracted from each other 
so that the average signal-to-noise ratio (SNR) is improved.

Both algorithms tested follow the same algorithm structure 
up until this step. In stationary spectral subtraction, noise 
estimates are calculated on each frequency channel to 
determine a noise gate. Then the gate is applied to the signal 
(7). Non-stationary spectral subtraction is an extension of 
the stationary noise reduction algorithm. It follows a similar 
process but also incorporates the dynamic changing of the 
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SUMMARY
Noise in media is any undesirable signal that masks 
relevant information content. The addition of noise 
to real-world data in any context is practically 
inevitable. Noise reduction algorithms in the past 
have addressed the problem but lacked adaptability 
to various real-world applications while also being 
time and resource extensive. Spectral subtraction 
provides a hybrid approach to noise reduction that 
incorporates versatility and efficient resource usage. 
This research tested the performance of two spectral 
subtraction noise reduction algorithms (stationary 
and non-stationary) across five categories of real-
world noise (speech only, speech with natural noise, 
music, animal sounds, and noise only). The research 
question under study was how stationary and non-
stationary spectral subtraction algorithms differ in 
their noise reduction performance when subjected 
to the various categories of noise. The testing was 
done based on normalized cross-correlation, which 
is the similarity between the noise-reduced audio and 
the original recording in each case. Non-stationary 
spectral subtraction performed better in samples 
where human speech was the target: speech only 
and speech with natural noise. Stationary spectral 
subtraction performed better when denoising music 
and animal sounds. This anomaly in performance 
between the two algorithms was only noted in 
categories with no human speech. These results 
exemplify the performance and versatility of different 
spectral subtraction algorithms. The category-
specific results can be used to employ specific 
spectral subtraction algorithms for specific tasks for 
optimum performance.

INTRODUCTION
Noise in media is any random, unpredictable, and 

undesirable signal or change in signals, that masks relevant 
information content (1). Pertaining to digital audio, noise is any 
undesirable signal that hinders the quality and intelligibility of 
the relevant sound signals (1).

The addition of noise to real-world data in any context 
is practically inevitable and can be traced to a multitude of 
internal and external factors, some as fundamental as the 
electronic equipment involved in the system itself. To a lay 
person, noise may merely be an inconvenience in audio 
consumption. However, in many fields, noiseless sound 
is a fundamental necessity. For instance, noise reduction 
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noise gates over time. This capitalizes on the assumption that 
audio patterns persisting over longer timescales (relative to 
the timescale of the signal) are noise (7).

Due to its hybrid nature, spectral subtraction incorporates 
both versatility and efficient resource usage, judiciously 
employing artificial intelligence as well as traditional gating 
methods.

We studied the effectiveness of spectral subtraction 
algorithms in this complex task of identifying and reducing 
auditory noise. More specifically, the aim was to determine 
whether non-stationary spectral subtraction is more effective 
at noise reduction compared to stationary spectral subtraction 
in five categories of noise:

1. Speech only - human speech with synthetic noise
2. Speech with natural noise - human speech with �natural 

noise
3. Music

a. Music with speech - music along with human 
speech

b. Music without speech - music by itself
4. Animal sounds - non-human vocal sounds
5. The noise only - no distinct target

The findings showed that non-stationary spectral 
subtraction was more effective in noise reduction when the 
target was human speech, including speech only, speech 
with natural noise, and music with speech. On the other 
hand, stationary spectral subtraction showed slightly better 
performance in reducing noise in music-only samples and 
significantly better performance in reducing noise in animal 
sounds.

RESULTS
The testing was done by normalized cross-correlation, 

which the similarity between the noise-reduced audio and the 
original recording in each case.

A Mann-Whitney U test was conducted on the resulting 
data since it contains outliers and has a relatively small 
sample space.

The performance of stationary and non-stationary spectral 
subtraction algorithms was compared across different noise 
categories using the Mann-Whitney U test. The test results 
for the speech only, speech with natural noise, music, and 
animal sounds categories, respectively are presented 
(Table 1). Notably, the noise-only category does not have a 
test result due to normalized cross-correlation values of 0 in 
one or more samples.

The differences in performance were not statistically 
significant. Despite this, the results are qualitatively different. 
Based on the normalised cross-correlation, the non-
stationary noise reduction algorithm performed better with 
categories targeting human speech as the subject, such as 
the speech only, speech with natural noise, and music with 
speech categories. 

Contrary to expectation, the stationary noise reduction 
algorithm outperformed the non-stationary noise reduction 
algorithms in the remainder of the categories, including the 
music without speech, and animal sounds. 

The performance of the two algorithms comparatively 
over the five noise categories is visualized (Figure 1). In 
the ‘speech only’, ‘speech with natural noise’ and ‘music 
with speech’ categories, non-stationary spectral subtraction 
performed better on average. In ‘music without speech’, and 
‘animal sounds’, stationary spectral subtraction performed 
better, notably in the latter. In the ‘noise only’ category, 
stationary spectral subtraction failed to reduce noise and 
scored 0%.

The performance of the two algorithms comparatively 
over all 15 samples is also visualized (Figure 2).

In 9 samples out of 15, non-stationary spectral subtraction 
performed better than stationary spectral subtraction. The 
accuracy scores for samples 13 and 14 were 0% for at least 
one of the two algorithms.

Table 1: Summary of Mann-Whitney U Analysis between noise reduction performance of stationary spectral subtraction and non-
stationary spectral subtraction for different noise categories.
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The percentage accuracy scores for samples 13 and 
14 and the performance of the noise-only category were 
anomalies in the result data. This is because the testing 
metric does not account for a percentage accuracy of 0% 
meaningfully.

An example of an audio sample through all the stages is 
given to improve clarity. First, sample 14 is represented as 
a nearly silent audio sample, as indicated by the amplitude 
graph (Figure 3-A). Subsequently, the amplitude graph 
of the added noise is represented (Figure 3-B). The 
application of the stationary spectral subtraction algorithm 
for noise reduction is depicted also depicted along with the 
result obtained from the non-stationary spectral subtraction 
algorithm (Figure 3-C, 3-D).

DISCUSSION
Our investigation aimed to address the question of how 

stationary and non-stationary spectral subtraction algorithms 
differ in their ability to reduce noise. By evaluating their 
performance across various noise categories, we gained 
insights into their respective strengths and limitations.

In the analysis of each noise category, we observed 
distinct patterns in the performance of the algorithms. 

Audio samples with human speech and synthetic noise 
comprised the ‘speech only’ category. The non-stationary 
spectral subtraction algorithm performed better on average 
than the stationary spectral subtraction algorithm (Figure 1). 
This result was as expected due to the dynamic nature of 
noise gates used in non-stationary spectral subtraction. The 
non-stationary algorithm takes into account consistencies 
and variations across the length of the sample to identify 
noise. The adaptability of the non-stationary algorithm allows 
it to better handle time-varying noise characteristics, which 
can be advantageous in dynamic noise conditions.

The ‘speech with natural noise’ category is the noise 
category most representative of real-life noise, and thus 
the performance of the algorithms in this category was of 
particular importance. As in the ‘speech only’ category, the 
non-stationary spectral subtraction algorithm performed 
better on average than the stationary spectral subtraction 
algorithm. 

In the ‘music with speech’ sub-category, the non-stationary 

Figure 2: Graphical representation of comparative category wise normalised cross-correlation between SO and SR for all samples. 
Non-stationary spectral subtraction outperformed stationary spectral subtraction in 9 out of 15 instances. For samples 13 and 14, at least 
one of the two algorithms yielded a 0% accuracy score. The exceptional results observed in samples 13 and 14, as well as in the noise-only 
category, deviated from the typical outcome data. This discrepancy arises from the testing metric's inability to convey meaningful information 
when accuracy scores reach 0%.

Figure 1: Graphical representation of comparative category wise normalised cross-correlation between SO and SR. Across the 
categories of 'speech only,' 'speech with natural noise,' and 'music with speech,' non-stationary spectral subtraction exhibited superior 
performance on average. For 'music without speech' and 'animal sounds,' stationary spectral subtraction demonstrated better results, 
particularly in the case of the latter. Conversely, in the 'noise only' category, stationary spectral subtraction was ineffective in noise reduction, 
receiving a score of 0%.
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spectral subtraction algorithm performed significantly better 
than the stationary spectral subtraction algorithm. This 
suggests that in more complex sound mixtures, its ability to 
adjust the noise gates over time gives it greater advantage.

Stationary spectral subtraction performed slightly better 
than non-stationary spectral subtraction when denoising 
samples from the ‘music without speech’ sub-category. It can 
be inferred that the non-stationary noise reduction algorithm 
may have confused music with noise, since it assumes 
persisting audio patterns to be noise. The stationary noise 
reduction algorithm, on the other hand, gates the frequency 
bands indifferent to patterns in the sample, bypassing the 
possible confusion.

In the ‘animal sounds’ category, the stationary spectral 
subtraction algorithm performed significantly better than the 
non-stationary spectral subtraction algorithm. The anomaly 
in performance between the two algorithms in this category 
may have arisen because the algorithms were trained to 
primarily denoise human speech, the absence of which may 
have caused the drop in performance of the non-stationary 
spectral subtraction algorithm. Still, how the stationary noise 
reduction algorithm coped with the anomalous samples 
despite the same training remains inconclusive.

In analysing the results, we observed an anomaly in 
the noise-only category, specifically in samples 13 and 14, 
where one or more algorithms failed to produce a result. This 
anomaly can be exemplified by considering the graphs of 
sample 14 at different stages (Figure 3). 

As outlined in the testing section earlier, the percentage 
accuracy score used is a normalized cross-correlation 
measure. As evident from the graphs, the algorithms were 
unable to achieve perfect noise reduction for sample 14. 
However, due to the comparison being made against a 
completely blank sample, even the slightest discrepancies 
significantly reduced the accuracy score, ultimately resulting 
in a score of zero percent.

In contrast to this anomalous case, we present a typical 
example showcasing the noise reduction process. The original 
sample 1 is illustrated, along with sample 1 after synthetic 
noise was added (Figure 3-E, 3-F). The outcome of noise 
reduction using the stationary spectral subtraction algorithm 
and the result obtained from the non-stationary spectral 
subtraction algorithm is also depicted (Figure 3-G, 3-H).

In conclusion, it was found that non-stationary spectral 
subtraction performed better in samples where human 
speech was the target: speech only, speech with natural 
noise and music with human speech, while stationary spectral 
subtraction performed marginally better when denoising 
music only, and significantly better when denoising animal 
sounds. 

Despite the anomaly in objective results, tests like the 
manual comparison of graphs and listening to the sample 
established that stationary noise reduction performed better 
with the last category: noise only.

The quantitative test used in the procedure was based 
on a comparison to the ‘ideal’ noise-reduced sample. This 
was assumed to be the original sample SO since denoising 
a synthetically noised sample was expected to return the 
original input. The synthetic noise generated may not 
perfectly represent real-world noise. Still, the noise reduction 
performance measure should hold value.

However, in some categories, the original sample may 

Figure 3: Sample 14 (A-D) and Sample 1 (E-H) through various 
stages. Sample 14 is initially a near-silent audio clip, evident from 
its amplitude graph (A). The graph for the added noise's amplitude 
is shown next (B). We present both the use of the stationary spectral 
subtraction algorithm and the outcome of the non-stationary spectral 
subtraction algorithm for noise reduction (C, D). In contrast, we offer 
a standard example to demonstrate noise reduction. The original 
sample 1 is displayed, followed by sample 1 after synthetic noise 
introduction (E, F). Results from applying the stationary spectral 
subtraction algorithm and the non-stationary spectral subtraction 
algorithm for noise reduction are also shown (G, H).
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have contained noise prior to the addition of synthetic noise. 
This may have affected the reliability of the similarity test with 
the speech with natural noise, music without speech and 
noise-only categories in particular. 

The noise, when synthetically added, did not vary with time. 
This is a limitation to the representativeness of the sample 
space, since in the real world, there may be scenarios where 
noise varies significantly with time. In future studies, the noise 
can be generated more organically, rather than using white 
noise, to better test the robustness of these techniques.

In this study, we use two types of noise reduction 
techniques. Comparison to other common methods of noise 
reduction, e.g., the Butterworth and Wiener Filtering, would 
prove useful.

A profound application of spectral subtraction noise 
reduction could be in its use in hearing aids. By distinguishing 
speech from noise, the speech-to-noise ratio SNR could 
be enhanced, aiding the perception and comprehension of 
speech in the presence of background noise (8).

MATERIALS AND METHODS
An overview of the process if illustrated (Figure 4). The 

first step in the process is the decomposition of the sound 
sample into frequency bands for the second step: the noise 
threshold calculation for each frequency band (6). 

Sound is processed by microphones, and consequently 
computers, in terms of an intensity-time graph. Sound is a 
mostly periodic function of pressure differences in a medium 
(the intensity factor) with respect to time. Consider the simple 
periodic signal:

This signal represents a sound consisting of a pure cosine 
wave with a frequency of 0.5 (time period 2). 

Sound in the real world, however, consists of a multitude of 
such pure signals. It is difficult to, therefore, apply frequency-
related operations to it. To decompose a complex sound to 
its constituent frequencies, Fourier transformation is used (9, 
10). Consider the following compound signal:

This compound signal is a combination of two primary 
signals with their own respective frequencies of 0.5 and 2.

The Fourier transform g* is the amplitude-frequency 
representation of the original intensity-time signal g. The 
domain of the signal is converted from time (t) to frequency (f).

The value of the Fourier transforms g* oscillates around 
0 for most of the frequencies but shows a spike at 0.5 and 2, 
thus decomposing the signalg into its constituent frequencies 
(10).

In this manner, the complex audio signal is decomposed 
into its various frequencies and categorized into frequency 
bands, the noise gates for which are then calculated.

The application of the gate is essentially the removal of 
the estimated noise signals (noise gates) from the compound 
signal. The Fourier Transforms of the noise and the noisy 
signal are ‘subtracted’ from each other. The resulting Fourier 
Transform is then processed through the inverse Fourier 
transform, converting a signal in the frequency domain (f) 
back to its corollary in the time domain (g) (6).

Sample Testing on Spectral Subtraction Algorithms
The procedure for testing a sample on either of the 

algorithms includes three primary steps. An original audio file 
(SO) in WAV format was uploaded to GitHub. The algorithm 
accessed this file as GitHub user content.

Synthetic noise was added to each SO to obtain the noisy 
sample (SN). The synthetic noise was a blend of sounds of 
various frequencies and the configuration of this noise was 
dependent on 3 arguments: minimum frequency, maximum 
frequency, and intensity factor. The noise varied from sample 
to sample to ensure a more representative sample space. The 
addition of noise was a plain overlapping of both waveforms. 
SN was then passed through stationary and/or non-stationary 
noise reduction to obtain the noise-reduced audio SR. Both 
algorithms were constructed and run in a Python environment.

Testing
If SO is a noiseless audio file, the ideal outcome of noise 

reduction should be the same as SO. This means that whatever 
synthetic noise was added to SO was completely removed, 
keeping the desired sound intact. 

Based on the ideal case, the two algorithms were tested 
on a percentage similarity figure of SO and SR. Percentage 
accuracy is the normalised cross-correlation between the 

Figure 4: Overview of steps undertaken in the spectral subtraction algorithm. The first step in the process is the decomposition of the 
sound sample into frequency.  Using Fourier transforms, the complex audio signal is decomposed into its various frequencies and categorized 
into frequency bands. Then noise gates are calculated for the various frequency bands.  Finally, the Fourier transforms of the noise and the 
noisy signal are ‘subtracted’ from each other, in a process called spectral subtraction.
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Table 2: Description of the composition of the different noise categories.
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noise-reduced audio SR and the original recording SO. 
Effectively, it is a score of how similar the noise-reduced 
audio is to the ideal noise-less audio.

Apart from percentage accuracy, the graphs and audios of 
the SO, SN, and SR were also recorded and studied (11).

Statistical tests were conducted using the online statistical 
tool DATAtab. The analysis involved the addition of values 
and the application of the Mann-Whitney U test, which is a 
non-parametric test suitable for comparing two independent 
groups. In this study, a significance level of 0.05 was chosen 
as the threshold to determine statistical significance.

Data Collection for the Algorithm
The 15 data samples collected for the purpose of testing 

the algorithms were divided into 5 broad categories. The 
primary 3 categories are relatively noise-free common 
sounds with added noise.

Note that in some categories, synthetic noise was added 
selectively to some samples only, since many already had 
natural noise. This also ensures that a more diverse and 
representative range of noise is included.
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