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step that tracks and stores data on the particle positions at 
different times (3). The Kalman filter, an algorithmic estimation 
tool, uses this data to produce a smooth trajectory of a particle 
by minimizing the effects of energy loss and scattering when 
tracking particles (3). It analyzes this data and uses matrix 
operations to estimate a more accurate position of the particle 
(3). 
 Unfortunately, current classification methods will soon be 
outdated due to increasing demands at the LHC. The number 
of proton collisions at the collider is expected to increase 
10-fold by 2025, which will overload the Kalman filters with 
statistical noise and make it significantly more challenging to 
identify trajectories (2). Even with computer central processing 
unit improvements and the present algorithm software, it 
is estimated that there remains a more than 10-fold gap in 
the data processing capabilities required for the increased 
level of collisions (2). Therefore, novel techniques need to be 
developed to advance particle classification research at the 
LHC. 
 The most attractive field for finding new algorithms 
is machine learning, and CERN researchers are already 
exploring deep neural networks to simplify and speed 
up computer processing (4). In this study, we evaluate 
TensorFlow, an open-source library that contains tools for 
data preparation and deep learning models through the 
Keras Application Programming Interface. One of the types 
of deep learning models is image classification, which 
already plays a significant role in figure recognition in the 
technology, healthcare, and security fields (5). TensorFlow’s 
image classification model takes in test images and, as the 
name suggests, categorizes them into thematic maps of their 
pixels, which are used to predict the classifications of test 
images (6). In training an image classification model, there 
are two methods: unsupervised and supervised classification 
(7). Unsupervised classification is when the model creates 
its own groupings without a user’s designation of the classes 
or a user’s designation of bounds for the sample images’ 
pixels (7). Supervised classification is the opposite; the user 
designates a fixed number of classes and assigns groups of 
pixels for the model to analyze (7). 
 Since each particle type has similar trajectories and 
images within its class, image classification poses an enticing 
choice for predictive modeling. The trajectory images we 
focus on come in five different categories: electrons, kaons, 
muons, pions, and protons. These were the categories 
with trajectories available in our dataset (Figure 1) (8). Our 
research focused on answering three questions: Does the 
model’s accuracy increase as we expand the sample size of 
training images it uses, does it increase as we increase the 
number of training epochs it uses, and which particle types 
does it classify best?

Evaluating TensorFlow image classification in 
classifying proton collision images for particle colliders

SUMMARY
The Large Hadron Collider at the European Organization 
for Nuclear Research (CERN) is planned to increase the 
number of proton collisions 10-fold by 2025. To keep up 
with this rapid pace, novel and more efficient particle 
collision classification methods must be developed, which 
many physicists believe can be achieved via machine 
learning. Since particle collisions and trajectories are 
mapped onto images, we chose TensorFlow’s image 
classification model to analyze and predict particle 
classes from these collision images. We aimed to evaluate 
the accuracy at which image classification could correctly 
identify a particle’s category from its trajectory image. We 
hypothesized that image classification would improve its 
accuracy with larger training datasets and more training 
epochs. To test our hypotheses, we randomly partitioned 
100 images for testing and reserved 3,400 for training. 
We ran numerous trials using different training set sizes, 
different training epoch values, and binary classification. 
Our results show that the model’s accuracy increases 
with more training samples, and it increases its accuracy 
and consistency with more training epochs. In binary 
classification, the model distinguishes the electron class 
the best, with a 95.2% mean accuracy. We conclude that 
image classification has remarkable implementation 
potential in classifying particle collision outcomes 
because of its ability to improve with training sample 
size and in binary classification. Our work highlights one 
method collision classification algorithms should utilize, 
which can work effectively with the increased data output 
by particle colliders and give physicists a vital tool in 
accelerating their field.

INTRODUCTION
 The Large Hadron Collider (LHC) at the European 
Organization for Nuclear Research (CERN)  is the world’s 
most powerful particle collider and is used by more than 100 
countries to experiment in particle physics (1). The collider 
works by colliding proton bunches at high speeds to produce 
a plethora of new subatomic particles. These collisions occur 
in cylinder-shaped bodies of the collider known as detectors 
(2). The new particles shoot off at various trajectories, hitting 
silicon sensors within the detector that record their position. 
To analyze results and classify particles, physicists must 
reconstruct the particles’ trajectory data from the raw sensor 
data. Currently, the LHC utilizes a multi-step process that 
includes first locating seeder hits, known as seeding, then 
applying layers of Kalman filters with algorithms to eliminate 
surrounding particle noise (3). Seeding acts as a preliminary 
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 We hypothesized that the TensorFlow model would 
improve its accuracy as we increased its training sample size 
as well as the number of training epochs. Additionally, we 
hypothesized that the model would work best with the proton 
class, because protons are the heaviest and presumably have 
the most distinct trajectory out of the five classes we worked 
with. For our experiments, we randomly divided 100 samples 
for testing and allocated the other 3,400 for training. We then 
conducted multiple trials using varying training sample sizes, 
varying numbers of epochs, and binary classification. We 
found evidence to support our first and second hypotheses: 
the model’s accuracy increased with larger training sets, as 
well as with more training epochs. Our results contradicted our 
third hypothesis and showed that the model instead excelled 
with electron classification with a 95.2% mean accuracy. This 
evidence demonstrates that image classification models have 
significant promise to determine particle collision outcomes 
with high success rates due to their ability to improve their 
accuracy with additional parameters. 

RESULTS
 The dataset we utilized contains roughly 1.2 million 
particle trajectory images, 10 pixels x 10 pixels, and their 
corresponding classification (8). The collisions were generated 
by the Acts Common Tracking Software (ACTS) simulation 
engine and converted to image form by the dataset creator 
to isolate individual trajectories and label classifications (8, 
9). Each image represents a transverse section of the LHC 
detector, such that its cylinder shape was sliced parallel to 
the bases to produce two cylinders (9). The dataset creator 
also rotated the trajectories so that the collisions occur at the 
bottom right corner (Figure 1). An image covers 1.1 meters 
x 1.1 meters, making each pixel represent a 110 mm x 110 
mm sector (Figure 1). The pixel shades detail the number of 
registered particle hits per sector, with a maximum of four. 
Since the dataset only had the image and its classification as 
parameters, we used both in our experiments.

Positive Correlation Between Training Sample Size and 
Model Accuracy
 As observed through studies such as Chu et. al, 
expanding sample sizes for image classification models 
can yield higher performance accuracies (10). Similarly, 
measuring the accuracy at increasing training sample sizes 
would allow us to determine whether our model could improve 
in its ability to correctly classify particle collision outcomes. 
To do this, we tested our model accuracy on 100 images 
while increasing the training set gradually from 400 to 3,400 
images. The accuracies increased with larger training set 
sizes, demonstrating a positive correlation (Linear regression 
t-test, p < 0.001, Figure 2).

Positive Correlation Between Training Epochs and Model 
Accuracy
 The number of epochs represents the number of times 
the model reviews the training dataset. In our previous 
experiment, we set our model to the default three epochs. 
Numerous studies have demonstrated that increasing the 
number of training epochs in neural networks improves test 
accuracy, so we hypothesized that the same adjustments 
would improve our model’s performance (11). Using a dataset 
split of 3,400 training and 100 testing samples, we assessed 
our model accuracy while incrementally increasing the 
number of epochs.
 Similar to the training set experiment, the model’s accuracy 
increased with more training epochs (Linear regression t-test, 
p < 0.001, Figure 3). This time, however, we were not limited 
by the amount of data we had and could increase the training 
epochs as much as we desired. So, we ran trials with 100, 
200, 300, 400, 500, and 1,000 training epochs to attempt 
to find the limit of improvement through epoch adjustments 
(Table 1). 
 At these extreme trials, the model reaches accuracies near 

Figure 1. Samples from Dataset. Shown are the 10 x 10 pixel particle 
trajectory images of 15 different samples, 3 of each classification. An 
image covers a 1.1 meter x 1.1 meter transverse section of the LHC 
detector, such that the body was sliced parallel to the bases. The 
trajectories are rotated so that the collisions occur at the bottom right 
corner. Differing shades of the pixels indicate the number of particle 
hits detected in each 110 mm x 110 mm sector. Collisions were 
generated by the ACTS simulation engine, then converted to image 
form to isolate individual trajectories and designate classifications.

Figure 2. Training set size and model accuracy are positively 
correlated. We recorded model accuracy using 3 training epochs 
at varying training sample sizes (30 trials per sample size). Sample 
sizes ranged from 400 training samples to 3,400 training samples, in 
increments of 300. The resulting scatter plot comparing the accuracy 
vs. the training set size is shown. Each trial is denoted by a black dot. 
Some trials are not visible due to overlapping accuracy values with 
other trials. The least-squares line of best fit is shown in blue while 
random guessing is shown by the red line. Linear regression T-test, 
p < 0.001.
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60% consistently. For instance, 1,000 training epochs gives 
the model a mean accuracy of 61.8%, with a margin of error 
of 1.38% (95% confidence interval, Table 1). The accuracies 
are significantly improved and more consistent compared 
to the trials with smaller epoch values. Unfortunately, this 
enhancement appears to have a limit; there is no significant 
improvement in the 1,000 epoch trials from the 500 epoch 
trials (two-sample T-test, p = 0.320, Table 1).

Improved Model Accuracy Through Binary Classification
 We attempted to boost the accuracy of our model even 
more by narrowing the classifications to two outcomes. Similar 
to expanding the number of samples or training epochs, 
simplifying multiclass learning into binary classification has 
been demonstrated in studies to enhance an algorithm’s 
accuracy (12). Instead of the five original particle types, we 
tested one type against all other types. In doing so, these 
experiments also gave evidence on which particle type is 
the easiest to distinguish. For each classification test, we 
relabeled the samples in accordance with binary code (“1” 
for the particle of interest and “0” for all the others), then 
evaluated our model on 100 test samples and 1,300 training 
samples.
 All binary models achieved higher mean accuracies than 
the original five-outcome model (Table 2). All maximums 
were at least 90%, and the electron and muon models 
each reached 100% multiple times. We found a statistically 
significant difference between the accuracies of the different 
binary models (One-way ANOVA, p < 0.001, Table 2). Further 
analysis revealed significant pairwise differences between 
the accuracies of the kaon and electron (Tukey post-hoc test, 
p < 0.001, Table 2), pion and electron (Tukey post-hoc test, 
p < 0.001, Table 2), muon and kaon (Tukey post-hoc test, p 
< 0.001, Table 2), and pion and muon groups (Tukey post-
hoc test, p = 0.007, Table 2). Electrons performed with the 
highest mean accuracy, followed by muons, protons, pions, 
then kaons (Table 2). 

DISCUSSION
 From our experiments, the model accuracy demonstrated 
a positive correlation with training set size. It also showed a 
positive correlation with the number of training epochs, and 

its accuracy became more consistent with more epochs, 
illustrated by the decrease in standard deviations from 3 
to 1,000 epochs (Figure 3, Table 1). Epoch improvement 
became negligible after roughly 500 epochs. Finally, our 
model performed more accurately in binary classification 
with individual particle types than in classification with all 
five particle types. The electron model ran the best, with a 
95.2% mean accuracy, followed by the muon model, then the 
proton model, then the pion model, and the kaon model. All 
binary classification models reached maximums of at least 
90%. Our results lead us to conclude that image classification 
can distinguish and learn particle collision outcomes. Its 
accuracy improves with larger training datasets and more 
training epochs, and in both parameters, the model does not 
overfit the data. Image classification works best in classifying 
binary outcomes of particle collisions, where it can achieve 
accuracies of 90% and greater. The method performs better 
with certain particle classes over others, and we found that it 
works best in distinguishing electrons and muons.
 We acknowledge several limitations, primarily in our 
dataset, that could have affected our conclusions. The 10x10 
images of the dataset could have been too oversimplified, 
eliminating more distinct features of the trajectories (8). 
The five particle classes we had are not the complete set of 
elementary particles, so we had a lack of representation of 
other particle classes (13). Additionally, many deep learning 
models require hundreds of thousands or millions of samples 
to predict effectively. We were limited to 3,500 samples 
in total, preventing our ability to observe trends with huge 
amounts of data. In a hypothetical situation where a particle 
is not one of the possible targets, the model would misclassify 
the particle, showing the need for more data not just on the 
particles already present in the dataset, but also those that 
are excluded.
 These constraints emphasize numerous variables to 
explore in future experiments. Seeing that Hirahara et al. 
concluded through their study that optimized image scaling 
increases accuracy in neural network models, we would like 
to experiment with more pixelated (and thus more detailed) 
collision images as data (14). We predict that this adjustment 
will boost our model’s accuracies, in alignment with Hirahara 
et al., Since there are more than five elementary particles, 

Table 1. Model reaches an accuracy improvement limit between 
500 and 1,000 training epochs. We recorded model accuracy 
using 3,400 training samples at varying numbers of training 
epochs, ranging from 100 to 1,000 (10 trials per number of training 
epochs). The table shows the numbers of training epochs and their 
corresponding mean accuracy, standard deviation, and maximum 
as a percent. Mean accuracy, referring to the statistical mean, and 
standard deviation were calculated within each group of 10 trials. 
95% confidence interval. Two-sample T-test, p = 0.320. 

Table 2. There are statistically significant differences between 
the accuracies of the various binary models. We recorded Model 
accuracy using 1,300 training samples and 7 training epochs for 
every classification’s binary model (30 trials per classification). The 
table shows the particle type of interest and their corresponding 
mean accuracy, standard deviation, and maximum as a percent. 
Mean accuracy, referring to the statistical mean, and standard 
deviation were calculated within each group of 30 trials. One-way 
ANOVA, p < 0.001. Tukey post hoc test, see Results section for p 
values. 
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we are interested in acquiring data for additional particle 
categories to examine our model’s performance with more 
classes. Image classification has achieved higher accuracies 
with other datasets that have more categories, such as 
handwritten digits (15). Even when the handwritten digits 
(MNIST) dataset, which has 10 categories for the 10 digits, 
are shortened to 3,500 samples, 500 epochs, and a 3:1 
ratio of train and test data (to match the parameters for the 
particle collision model), it achieves an accuracy of 96.5% 
(15). The difference in accuracy between the MNIST dataset 
and particle collision dataset is most likely due to the images 
in the particle collision dataset not being detailed enough 
and the MNIST dataset having a more straightforward and 
predictable pattern for the machine learning model. However, 
we still anticipate that TensorFlow will maintain similar 
accuracies to those recorded in our experiments with more 
particle categories, and that the accuracies will increase by 
expanding the data and training runs. Typically, researchers 
use all 70,000 samples of the MNIST dataset, as shown in 
Hasanpour et al., to allow the model to analyze the dataset 
further in order to increase its accuracy and understanding of 
the dataset (16). Therefore, we are interested in training our 
model on thousands more trajectory images. As shown in our 
epoch experiment, we found a limit for epoch improvement of 
the accuracy. There were also long run times for each trial, 
which discourages further exploration and implementation 
into the model. We have not found a limit in improvement with 
increasing the training set size, and more data samples will 
allow us to uncover the complete potential of this method. 
Moreover, we would also like to explore the effects of using 
unbalanced distributions of particle classes to train our model, 
because the types of output particles following LHC particle 
collisions are rarely evenly-distributed (17). When we trained 
the binary classification model on uneven representation 
and tested on a handful of runs, the accuracies (data not 

shown) were lower compared to the accuracies we show here 
(Figure 4). We hypothesize that the accuracies will fluctuate 
if the training set splits between different particle types are 
changed. We reason that the frequency at which the model 
examines one particle will be different compared to that of 
another particle, resulting in a higher comprehension for 
one and a lower comprehension for the other. Furthermore, 
we look forward to integrating other particle characteristics, 
namely charge, momentum, and spin (other types of raw data 
measured by the LHC silicon sensors), into classification 
models (2). This could be achieved through a multivariate 
model analyzing the collision output image along with the 
added parameters to determine the resulting particle from 
the collision. This multivariate analysis adds more potential to 
boost our algorithm’s accuracies, because it would increase 
the number of features available to the model and provide 
insights on the model’s ability to comprehend other particle 
characteristics.
 In summary, TensorFlow’s image classification model 
improves its accuracy in classifying particle collision 
outcomes with larger sample sizes and more training epochs. 
Image classification worked the best in binary classifications, 
especially with electrons and muons, which both achieved 
mean accuracies above 90%. Our work indicates the 
promising potential that TensorFlow image classification 
algorithms have compared to other neural network methods. 
For example, Tsaris et al. utilized Long Short-Term Memory 
recurrent neural networks in their hit classification model and 
recorded a 70% overall accuracy (18). Tsaris et al. used a 
similar ACTS dataset composed of millions of collision events. 
With our model recording 62% mean accuracy training 
with only 3,400 samples, the TensorFlow algorithm has the 
potential to exhibit higher accuracies with the larger training 
datasets. Additionally, as reported in Tüysüz et al., Graph 
Neural Network models face the issue of extensive training 
times, taking around one week to process the 10,000 event 
TrackML dataset (19). Seeing that the TensorFlow algorithm 
takes roughly 4 minutes to train and test on 3,500 samples, 
we predict that image classification can have exceptional 

Figure 3. Training epochs and model accuracy are positively 
correlated. We recorded model accuracy using 3,400 training 
samples at increasing numbers of training epochs (30 trials per 
number of training epochs). Training epochs ranged from three to 
seven. The resulting scatter plot comparing the accuracy vs. the 
number of epochs is shown. Each trial is denoted by a black dot. 
Some trials are not visible due to overlapping accuracy values with 
other trials. The least-squares line of best fit is shown in blue while 
random guessing is shown by the red line. Linear regression T-test, 
p < 0.001. 

Figure 4. Electron model performed with the highest accuracy 
among binary models. We recorded a binary model accuracy 
using 1,300 training samples and 7 training epochs for all 5 particle 
classifications (30 trials per classification). The resulting box plots 
displaying the accuracies for each model is shown. The black dot in 
the Electron column represents one trial. 
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scalability with larger datasets. Its ability to quickly recognize 
and strengthen patterns with rapidly increasing amounts 
of data suits implementation in the LHC and other particle 
accelerators. TensorFlow is also an open-source program, 
which allows more users everywhere to experiment with 
and record data on particle collisions. We hope our work 
progresses the field of optimizing particle classification 
techniques, allowing particle physicists to accelerate their 
research on elementary particles. 

MATERIALS AND METHODS
 We used 350 simulated particle collisions programmed 
to mimic the conditions of LHC silicon detectors as data (as 
explained in the Results section). The original dataset is found 
at: www.kaggle.com/datasets/stephenmugisha/particle-
collisions/discussion (8). Each collision event produced 
around 3,000 particle trajectories, totaling roughly 1.2 million 
10x10 images, in ‘.pkl’ format.
 In the total of 1.2 million samples, 3,000 were electron 
instances, 700 were muon instances, 980,000 were pion 
instances, 160,000 were kaon instances, and 114,000 were 
proton instances. Clearly, the sample size was not consistent 
for each class. To account for this, we reduced the number 
of samples for each particle to 700 samples, the size of the 
muon class. The resulting dataset contained 3,500 samples. 
Reducing the dataset to balanced distributions of each 
classification ensured equal representation, which allowed us 
to more accurately evaluate our model. When we trained and 
tested the model on the full, unbalanced dataset it performed 
well with the pion class, but not on the other classes, resulting 
in a misleading overall accuracy (data not shown). Balancing 
the dataset enabled us to obtain an accuracy that reflected 
the model’s ability to understand all of the classes. 
 All tests scaled the data through standardization to limit 
bias of certain features of the dataset. The target/labels used 
the ‘to_categorical’ function from TensorFlow to convert the 
labels into a format that the model can understand.
 We used Python version 3.9.12, with the libraries ‘NumPy’ 
and ‘sklearn’ to tidy, split, and rescale the data into formats 
that TensorFlow could process (20, 21). We used the ‘pickle’ 
library to change the file from ‘.pkl’ format to a ‘.csv’ file (22). 
The data was downloaded as 350 pickle files, each of which 
contained approximately 3,000 labeled images. The files were 
also “unpickled” through the ‘pickle’ module in Python. Then, 
we changed the target value range to 0 - 4, which was more 
practical than the initial target values of 11, 13, 211, and more. 
We used the ‘Matplotlib’ library to visualize the 10 x 10 sample 
images (23). The complete script for these operations can be 
found at our GitHub repository: github.com/rohannakra/AI-
Predicts-Particle-Collisions.git, in the file “main.ipynb”. 
 Our model was a TensorFlow Keras model with two 
input layers, two hidden layers, and one output layer. We 
flattened the data into a single vector to be processed, the 
hidden layers predicted each batch of samples given, and 
stochastic gradient descent (the optimization function) 
updated the weights based on the hidden layers’ performance 
on the batch. We calculated model accuracy by the number 
of samples the model correctly identified divided by the 
total number of samples we tested the model on. We used 
TensorFlow’s library on Python as well to create the model 
(24). The code can also be found in the “main.ipynb” file in our 
GitHub repository. 

 To analyze trial results, we used the R language, version 
4.2.2., on the Rstudio integrated development environment. 
We used the R packages ‘readr’ and ‘tidyverse’ to integrate 
‘.csv’ result files and calculate statistics (25, 26). We also 
used the R package ‘ggplot2’ to produce the graphs of results 
(27). The trial results and the R analysis script are found in the 
GitHub repository as well, under the folder “R Data Analysis”. 

Positive Correlation Between Training Sample Size and 
Model Accuracy Procedure
 From our dataset of 3,500 images, we started by randomly 
selecting 100 images of each particle classification, totaling 
500 samples. We randomly partitioned the 500 samples into 
100 testing images and 400 training images. Then, we ran 
30 trials (to satisfy the Central Limit Theorem and create 
normality) and recorded the model’s accuracy, resetting the 
model’s memory after every trial. We repeated this process in 
increased increments of 300 training samples, 60 from each 
classification until we reached the maximum training set size 
available of 3,400.

Positive Correlation Between Training Epochs and Model 
Accuracy Procedure
 We randomly split our dataset into 3,400 training samples 
and 100 test samples. We started by altering the model to 
complete 4 training epochs and ran 30 trials and recorded 
the accuracies. We then repeated the procedure for five, 
six, and seven epochs. All trials used the same training and 
test images, and we wiped the memory of the model after 
every trial to create control in our experiment. When we 
experimented with 100 training epochs up to 1,000 epochs, 
we also used the same data split and cleaned the memory 
after every trial. These trials had long run-times, reaching 4 
minutes each at 1,000 training epochs, so we only gathered 
10 trials per epoch value.

Improved Model Accuracy Through Binary Classification 
Procedure
 We designated a particle class as “1” and labeled the 
rest as “0” in our 3,500-sample dataset. We took all 700 “1” 
particles and randomly selected 700 “0” particles to put into a 
separate data pool. From the pool, we randomly selected 100 
samples for testing and assigned the rest to training. We ran 
and recorded 30 trials, using 7 training epochs, then repeated 
the entire process for the other 4 particle types. 
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