
20 AUGUST 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

step that tracks and stores data on the particle positions at
different times (3). The Kalman filter, an algorithmic estimation
tool, uses this data to produce a smooth trajectory of a particle
by minimizing the effects of energy loss and scattering when
tracking particles (3). It analyzes this data and uses matrix
operations to estimate a more accurate position of the particle
(3).
	 Unfortunately, current classification methods will soon be
outdated due to increasing demands at the LHC. The number
of proton collisions at the collider is expected to increase
10-fold by 2025, which will overload the Kalman filters with
statistical noise and make it significantly more challenging to
identify trajectories (2). Even with computer central processing
unit improvements and the present algorithm software, it
is estimated that there remains a more than 10-fold gap in
the data processing capabilities required for the increased
level of collisions (2). Therefore, novel techniques need to be
developed to advance particle classification research at the
LHC.
	 The most attractive field for finding new algorithms
is machine learning, and CERN researchers are already
exploring deep neural networks to simplify and speed
up computer processing (4). In this study, we evaluate
TensorFlow, an open-source library that contains tools for
data preparation and deep learning models through the
Keras Application Programming Interface. One of the types
of deep learning models is image classification, which
already plays a significant role in figure recognition in the
technology, healthcare, and security fields (5). TensorFlow’s
image classification model takes in test images and, as the
name suggests, categorizes them into thematic maps of their
pixels, which are used to predict the classifications of test
images (6). In training an image classification model, there
are two methods: unsupervised and supervised classification
(7). Unsupervised classification is when the model creates
its own groupings without a user’s designation of the classes
or a user’s designation of bounds for the sample images’
pixels (7). Supervised classification is the opposite; the user
designates a fixed number of classes and assigns groups of
pixels for the model to analyze (7).
	 Since each particle type has similar trajectories and
images within its class, image classification poses an enticing
choice for predictive modeling. The trajectory images we
focus on come in five different categories: electrons, kaons,
muons, pions, and protons. These were the categories
with trajectories available in our dataset (Figure 1) (8). Our
research focused on answering three questions: Does the
model’s accuracy increase as we expand the sample size of
training images it uses, does it increase as we increase the
number of training epochs it uses, and which particle types
does it classify best?

Evaluating TensorFlow image classification in
classifying proton collision images for particle colliders

SUMMARY
The Large Hadron Collider at the European Organization
for Nuclear Research (CERN) is planned to increase the
number of proton collisions 10-fold by 2025. To keep up
with this rapid pace, novel and more efficient particle
collision classification methods must be developed, which
many physicists believe can be achieved via machine
learning. Since particle collisions and trajectories are
mapped onto images, we chose TensorFlow’s image
classification model to analyze and predict particle
classes from these collision images. We aimed to evaluate
the accuracy at which image classification could correctly
identify a particle’s category from its trajectory image. We
hypothesized that image classification would improve its
accuracy with larger training datasets and more training
epochs. To test our hypotheses, we randomly partitioned
100 images for testing and reserved 3,400 for training.
We ran numerous trials using different training set sizes,
different training epoch values, and binary classification.
Our results show that the model’s accuracy increases
with more training samples, and it increases its accuracy
and consistency with more training epochs. In binary
classification, the model distinguishes the electron class
the best, with a 95.2% mean accuracy. We conclude that
image classification has remarkable implementation
potential in classifying particle collision outcomes
because of its ability to improve with training sample
size and in binary classification. Our work highlights one
method collision classification algorithms should utilize,
which can work effectively with the increased data output
by particle colliders and give physicists a vital tool in
accelerating their field.

INTRODUCTION
	 The Large Hadron Collider (LHC) at the European
Organization for Nuclear Research (CERN) is the world’s
most powerful particle collider and is used by more than 100
countries to experiment in particle physics (1). The collider
works by colliding proton bunches at high speeds to produce
a plethora of new subatomic particles. These collisions occur
in cylinder-shaped bodies of the collider known as detectors
(2). The new particles shoot off at various trajectories, hitting
silicon sensors within the detector that record their position.
To analyze results and classify particles, physicists must
reconstruct the particles’ trajectory data from the raw sensor
data. Currently, the LHC utilizes a multi-step process that
includes first locating seeder hits, known as seeding, then
applying layers of Kalman filters with algorithms to eliminate
surrounding particle noise (3). Seeding acts as a preliminary

Rohan Nakra1*, Arin Vansomphone1*, Ryan Kimes1

1 Huntington Beach High School, Huntington Beach, California
* These authors contributed equally to this work

Article

20 AUGUST 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

	 We hypothesized that the TensorFlow model would
improve its accuracy as we increased its training sample size
as well as the number of training epochs. Additionally, we
hypothesized that the model would work best with the proton
class, because protons are the heaviest and presumably have
the most distinct trajectory out of the five classes we worked
with. For our experiments, we randomly divided 100 samples
for testing and allocated the other 3,400 for training. We then
conducted multiple trials using varying training sample sizes,
varying numbers of epochs, and binary classification. We
found evidence to support our first and second hypotheses:
the model’s accuracy increased with larger training sets, as
well as with more training epochs. Our results contradicted our
third hypothesis and showed that the model instead excelled
with electron classification with a 95.2% mean accuracy. This
evidence demonstrates that image classification models have
significant promise to determine particle collision outcomes
with high success rates due to their ability to improve their
accuracy with additional parameters.

RESULTS
	 The dataset we utilized contains roughly 1.2 million
particle trajectory images, 10 pixels x 10 pixels, and their
corresponding classification (8). The collisions were generated
by the Acts Common Tracking Software (ACTS) simulation
engine and converted to image form by the dataset creator
to isolate individual trajectories and label classifications (8,
9). Each image represents a transverse section of the LHC
detector, such that its cylinder shape was sliced parallel to
the bases to produce two cylinders (9). The dataset creator
also rotated the trajectories so that the collisions occur at the
bottom right corner (Figure 1). An image covers 1.1 meters
x 1.1 meters, making each pixel represent a 110 mm x 110
mm sector (Figure 1). The pixel shades detail the number of
registered particle hits per sector, with a maximum of four.
Since the dataset only had the image and its classification as
parameters, we used both in our experiments.

Positive Correlation Between Training Sample Size and
Model Accuracy
	 As observed through studies such as Chu et. al,
expanding sample sizes for image classification models
can yield higher performance accuracies (10). Similarly,
measuring the accuracy at increasing training sample sizes
would allow us to determine whether our model could improve
in its ability to correctly classify particle collision outcomes.
To do this, we tested our model accuracy on 100 images
while increasing the training set gradually from 400 to 3,400
images. The accuracies increased with larger training set
sizes, demonstrating a positive correlation (Linear regression
t-test, p < 0.001, Figure 2).

Positive Correlation Between Training Epochs and Model
Accuracy
	 The number of epochs represents the number of times
the model reviews the training dataset. In our previous
experiment, we set our model to the default three epochs.
Numerous studies have demonstrated that increasing the
number of training epochs in neural networks improves test
accuracy, so we hypothesized that the same adjustments
would improve our model’s performance (11). Using a dataset
split of 3,400 training and 100 testing samples, we assessed
our model accuracy while incrementally increasing the
number of epochs.
	 Similar to the training set experiment, the model’s accuracy
increased with more training epochs (Linear regression t-test,
p < 0.001, Figure 3). This time, however, we were not limited
by the amount of data we had and could increase the training
epochs as much as we desired. So, we ran trials with 100,
200, 300, 400, 500, and 1,000 training epochs to attempt
to find the limit of improvement through epoch adjustments
(Table 1).
	 At these extreme trials, the model reaches accuracies near

Figure 1. Samples from Dataset. Shown are the 10 x 10 pixel particle
trajectory images of 15 different samples, 3 of each classification. An
image covers a 1.1 meter x 1.1 meter transverse section of the LHC
detector, such that the body was sliced parallel to the bases. The
trajectories are rotated so that the collisions occur at the bottom right
corner. Differing shades of the pixels indicate the number of particle
hits detected in each 110 mm x 110 mm sector. Collisions were
generated by the ACTS simulation engine, then converted to image
form to isolate individual trajectories and designate classifications.

Figure 2. Training set size and model accuracy are positively
correlated. We recorded model accuracy using 3 training epochs
at varying training sample sizes (30 trials per sample size). Sample
sizes ranged from 400 training samples to 3,400 training samples, in
increments of 300. The resulting scatter plot comparing the accuracy
vs. the training set size is shown. Each trial is denoted by a black dot.
Some trials are not visible due to overlapping accuracy values with
other trials. The least-squares line of best fit is shown in blue while
random guessing is shown by the red line. Linear regression T-test,
p < 0.001.

20 AUGUST 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

60% consistently. For instance, 1,000 training epochs gives
the model a mean accuracy of 61.8%, with a margin of error
of 1.38% (95% confidence interval, Table 1). The accuracies
are significantly improved and more consistent compared
to the trials with smaller epoch values. Unfortunately, this
enhancement appears to have a limit; there is no significant
improvement in the 1,000 epoch trials from the 500 epoch
trials (two-sample T-test, p = 0.320, Table 1).

Improved Model Accuracy Through Binary Classification
	 We attempted to boost the accuracy of our model even
more by narrowing the classifications to two outcomes. Similar
to expanding the number of samples or training epochs,
simplifying multiclass learning into binary classification has
been demonstrated in studies to enhance an algorithm’s
accuracy (12). Instead of the five original particle types, we
tested one type against all other types. In doing so, these
experiments also gave evidence on which particle type is
the easiest to distinguish. For each classification test, we
relabeled the samples in accordance with binary code (“1”
for the particle of interest and “0” for all the others), then
evaluated our model on 100 test samples and 1,300 training
samples.
	 All binary models achieved higher mean accuracies than
the original five-outcome model (Table 2). All maximums
were at least 90%, and the electron and muon models
each reached 100% multiple times. We found a statistically
significant difference between the accuracies of the different
binary models (One-way ANOVA, p < 0.001, Table 2). Further
analysis revealed significant pairwise differences between
the accuracies of the kaon and electron (Tukey post-hoc test,
p < 0.001, Table 2), pion and electron (Tukey post-hoc test,
p < 0.001, Table 2), muon and kaon (Tukey post-hoc test, p
< 0.001, Table 2), and pion and muon groups (Tukey post-
hoc test, p = 0.007, Table 2). Electrons performed with the
highest mean accuracy, followed by muons, protons, pions,
then kaons (Table 2).

DISCUSSION
	 From our experiments, the model accuracy demonstrated
a positive correlation with training set size. It also showed a
positive correlation with the number of training epochs, and

its accuracy became more consistent with more epochs,
illustrated by the decrease in standard deviations from 3
to 1,000 epochs (Figure 3, Table 1). Epoch improvement
became negligible after roughly 500 epochs. Finally, our
model performed more accurately in binary classification
with individual particle types than in classification with all
five particle types. The electron model ran the best, with a
95.2% mean accuracy, followed by the muon model, then the
proton model, then the pion model, and the kaon model. All
binary classification models reached maximums of at least
90%. Our results lead us to conclude that image classification
can distinguish and learn particle collision outcomes. Its
accuracy improves with larger training datasets and more
training epochs, and in both parameters, the model does not
overfit the data. Image classification works best in classifying
binary outcomes of particle collisions, where it can achieve
accuracies of 90% and greater. The method performs better
with certain particle classes over others, and we found that it
works best in distinguishing electrons and muons.
	 We acknowledge several limitations, primarily in our
dataset, that could have affected our conclusions. The 10x10
images of the dataset could have been too oversimplified,
eliminating more distinct features of the trajectories (8).
The five particle classes we had are not the complete set of
elementary particles, so we had a lack of representation of
other particle classes (13). Additionally, many deep learning
models require hundreds of thousands or millions of samples
to predict effectively. We were limited to 3,500 samples
in total, preventing our ability to observe trends with huge
amounts of data. In a hypothetical situation where a particle
is not one of the possible targets, the model would misclassify
the particle, showing the need for more data not just on the
particles already present in the dataset, but also those that
are excluded.
	 These constraints emphasize numerous variables to
explore in future experiments. Seeing that Hirahara et al.
concluded through their study that optimized image scaling
increases accuracy in neural network models, we would like
to experiment with more pixelated (and thus more detailed)
collision images as data (14). We predict that this adjustment
will boost our model’s accuracies, in alignment with Hirahara
et al., Since there are more than five elementary particles,

Table 1. Model reaches an accuracy improvement limit between
500 and 1,000 training epochs. We recorded model accuracy
using 3,400 training samples at varying numbers of training
epochs, ranging from 100 to 1,000 (10 trials per number of training
epochs). The table shows the numbers of training epochs and their
corresponding mean accuracy, standard deviation, and maximum
as a percent. Mean accuracy, referring to the statistical mean, and
standard deviation were calculated within each group of 10 trials.
95% confidence interval. Two-sample T-test, p = 0.320.

Table 2. There are statistically significant differences between
the accuracies of the various binary models. We recorded Model
accuracy using 1,300 training samples and 7 training epochs for
every classification’s binary model (30 trials per classification). The
table shows the particle type of interest and their corresponding
mean accuracy, standard deviation, and maximum as a percent.
Mean accuracy, referring to the statistical mean, and standard
deviation were calculated within each group of 30 trials. One-way
ANOVA, p < 0.001. Tukey post hoc test, see Results section for p
values.

20 AUGUST 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

we are interested in acquiring data for additional particle
categories to examine our model’s performance with more
classes. Image classification has achieved higher accuracies
with other datasets that have more categories, such as
handwritten digits (15). Even when the handwritten digits
(MNIST) dataset, which has 10 categories for the 10 digits,
are shortened to 3,500 samples, 500 epochs, and a 3:1
ratio of train and test data (to match the parameters for the
particle collision model), it achieves an accuracy of 96.5%
(15). The difference in accuracy between the MNIST dataset
and particle collision dataset is most likely due to the images
in the particle collision dataset not being detailed enough
and the MNIST dataset having a more straightforward and
predictable pattern for the machine learning model. However,
we still anticipate that TensorFlow will maintain similar
accuracies to those recorded in our experiments with more
particle categories, and that the accuracies will increase by
expanding the data and training runs. Typically, researchers
use all 70,000 samples of the MNIST dataset, as shown in
Hasanpour et al., to allow the model to analyze the dataset
further in order to increase its accuracy and understanding of
the dataset (16). Therefore, we are interested in training our
model on thousands more trajectory images. As shown in our
epoch experiment, we found a limit for epoch improvement of
the accuracy. There were also long run times for each trial,
which discourages further exploration and implementation
into the model. We have not found a limit in improvement with
increasing the training set size, and more data samples will
allow us to uncover the complete potential of this method.
Moreover, we would also like to explore the effects of using
unbalanced distributions of particle classes to train our model,
because the types of output particles following LHC particle
collisions are rarely evenly-distributed (17). When we trained
the binary classification model on uneven representation
and tested on a handful of runs, the accuracies (data not

shown) were lower compared to the accuracies we show here
(Figure 4). We hypothesize that the accuracies will fluctuate
if the training set splits between different particle types are
changed. We reason that the frequency at which the model
examines one particle will be different compared to that of
another particle, resulting in a higher comprehension for
one and a lower comprehension for the other. Furthermore,
we look forward to integrating other particle characteristics,
namely charge, momentum, and spin (other types of raw data
measured by the LHC silicon sensors), into classification
models (2). This could be achieved through a multivariate
model analyzing the collision output image along with the
added parameters to determine the resulting particle from
the collision. This multivariate analysis adds more potential to
boost our algorithm’s accuracies, because it would increase
the number of features available to the model and provide
insights on the model’s ability to comprehend other particle
characteristics.
	 In summary, TensorFlow’s image classification model
improves its accuracy in classifying particle collision
outcomes with larger sample sizes and more training epochs.
Image classification worked the best in binary classifications,
especially with electrons and muons, which both achieved
mean accuracies above 90%. Our work indicates the
promising potential that TensorFlow image classification
algorithms have compared to other neural network methods.
For example, Tsaris et al. utilized Long Short-Term Memory
recurrent neural networks in their hit classification model and
recorded a 70% overall accuracy (18). Tsaris et al. used a
similar ACTS dataset composed of millions of collision events.
With our model recording 62% mean accuracy training
with only 3,400 samples, the TensorFlow algorithm has the
potential to exhibit higher accuracies with the larger training
datasets. Additionally, as reported in Tüysüz et al., Graph
Neural Network models face the issue of extensive training
times, taking around one week to process the 10,000 event
TrackML dataset (19). Seeing that the TensorFlow algorithm
takes roughly 4 minutes to train and test on 3,500 samples,
we predict that image classification can have exceptional

Figure 3. Training epochs and model accuracy are positively
correlated. We recorded model accuracy using 3,400 training
samples at increasing numbers of training epochs (30 trials per
number of training epochs). Training epochs ranged from three to
seven. The resulting scatter plot comparing the accuracy vs. the
number of epochs is shown. Each trial is denoted by a black dot.
Some trials are not visible due to overlapping accuracy values with
other trials. The least-squares line of best fit is shown in blue while
random guessing is shown by the red line. Linear regression T-test,
p < 0.001.

Figure 4. Electron model performed with the highest accuracy
among binary models. We recorded a binary model accuracy
using 1,300 training samples and 7 training epochs for all 5 particle
classifications (30 trials per classification). The resulting box plots
displaying the accuracies for each model is shown. The black dot in
the Electron column represents one trial.

20 AUGUST 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

scalability with larger datasets. Its ability to quickly recognize
and strengthen patterns with rapidly increasing amounts
of data suits implementation in the LHC and other particle
accelerators. TensorFlow is also an open-source program,
which allows more users everywhere to experiment with
and record data on particle collisions. We hope our work
progresses the field of optimizing particle classification
techniques, allowing particle physicists to accelerate their
research on elementary particles.

MATERIALS AND METHODS
	 We used 350 simulated particle collisions programmed
to mimic the conditions of LHC silicon detectors as data (as
explained in the Results section). The original dataset is found
at: www.kaggle.com/datasets/stephenmugisha/particle-
collisions/discussion (8). Each collision event produced
around 3,000 particle trajectories, totaling roughly 1.2 million
10x10 images, in ‘.pkl’ format.
	 In the total of 1.2 million samples, 3,000 were electron
instances, 700 were muon instances, 980,000 were pion
instances, 160,000 were kaon instances, and 114,000 were
proton instances. Clearly, the sample size was not consistent
for each class. To account for this, we reduced the number
of samples for each particle to 700 samples, the size of the
muon class. The resulting dataset contained 3,500 samples.
Reducing the dataset to balanced distributions of each
classification ensured equal representation, which allowed us
to more accurately evaluate our model. When we trained and
tested the model on the full, unbalanced dataset it performed
well with the pion class, but not on the other classes, resulting
in a misleading overall accuracy (data not shown). Balancing
the dataset enabled us to obtain an accuracy that reflected
the model’s ability to understand all of the classes.
	 All tests scaled the data through standardization to limit
bias of certain features of the dataset. The target/labels used
the ‘to_categorical’ function from TensorFlow to convert the
labels into a format that the model can understand.
	 We used Python version 3.9.12, with the libraries ‘NumPy’
and ‘sklearn’ to tidy, split, and rescale the data into formats
that TensorFlow could process (20, 21). We used the ‘pickle’
library to change the file from ‘.pkl’ format to a ‘.csv’ file (22).
The data was downloaded as 350 pickle files, each of which
contained approximately 3,000 labeled images. The files were
also “unpickled” through the ‘pickle’ module in Python. Then,
we changed the target value range to 0 - 4, which was more
practical than the initial target values of 11, 13, 211, and more.
We used the ‘Matplotlib’ library to visualize the 10 x 10 sample
images (23). The complete script for these operations can be
found at our GitHub repository: github.com/rohannakra/AI-
Predicts-Particle-Collisions.git, in the file “main.ipynb”.
	 Our model was a TensorFlow Keras model with two
input layers, two hidden layers, and one output layer. We
flattened the data into a single vector to be processed, the
hidden layers predicted each batch of samples given, and
stochastic gradient descent (the optimization function)
updated the weights based on the hidden layers’ performance
on the batch. We calculated model accuracy by the number
of samples the model correctly identified divided by the
total number of samples we tested the model on. We used
TensorFlow’s library on Python as well to create the model
(24). The code can also be found in the “main.ipynb” file in our
GitHub repository.

	 To analyze trial results, we used the R language, version
4.2.2., on the Rstudio integrated development environment.
We used the R packages ‘readr’ and ‘tidyverse’ to integrate
‘.csv’ result files and calculate statistics (25, 26). We also
used the R package ‘ggplot2’ to produce the graphs of results
(27). The trial results and the R analysis script are found in the
GitHub repository as well, under the folder “R Data Analysis”.

Positive Correlation Between Training Sample Size and
Model Accuracy Procedure
	 From our dataset of 3,500 images, we started by randomly
selecting 100 images of each particle classification, totaling
500 samples. We randomly partitioned the 500 samples into
100 testing images and 400 training images. Then, we ran
30 trials (to satisfy the Central Limit Theorem and create
normality) and recorded the model’s accuracy, resetting the
model’s memory after every trial. We repeated this process in
increased increments of 300 training samples, 60 from each
classification until we reached the maximum training set size
available of 3,400.

Positive Correlation Between Training Epochs and Model
Accuracy Procedure
	 We randomly split our dataset into 3,400 training samples
and 100 test samples. We started by altering the model to
complete 4 training epochs and ran 30 trials and recorded
the accuracies. We then repeated the procedure for five,
six, and seven epochs. All trials used the same training and
test images, and we wiped the memory of the model after
every trial to create control in our experiment. When we
experimented with 100 training epochs up to 1,000 epochs,
we also used the same data split and cleaned the memory
after every trial. These trials had long run-times, reaching 4
minutes each at 1,000 training epochs, so we only gathered
10 trials per epoch value.

Improved Model Accuracy Through Binary Classification
Procedure
	 We designated a particle class as “1” and labeled the
rest as “0” in our 3,500-sample dataset. We took all 700 “1”
particles and randomly selected 700 “0” particles to put into a
separate data pool. From the pool, we randomly selected 100
samples for testing and assigned the rest to training. We ran
and recorded 30 trials, using 7 training epochs, then repeated
the entire process for the other 4 particle types.

Received: January 17, 2023
Accepted: May 3, 2023
Published: August 20, 2023

REFERENCES
1.	 CERN. “Our Member States.” CERN, home.cern/about/

who-we-are/our-governance/member-states. Accessed
29 December 2022.

2.	 Rousseau, David et al. “The TrackML challenge.” NIPS
2018 - 32nd Annual Conference on Neural Information
Processing Systems, Dec. 2018, pp. 1-23.

3.	 Sguazzoni, Giacomo. “Track reconstruction in CMS high
luminosity environment.” Nuclear and Particle Physics
Proceedings, 31 May 2016. https://doi.org/10.1016?j.
nuclphysbps.2015.09.437.

4.	 Coelho, Claudionor N. et al. “Automatic heterogeneous

20 AUGUST 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

quantization of deep neural networks for low-latency
interference on the edge for particle detectors.” Nature
Machine Intelligence, vol. 3, no. 1, Jun. 2021, pp. 675-
686. https://doi.org/10.1038/s42256-021-00356-5.

5.	 Schmidt, Johnathan et al. “Recent advances and
applications of machine learning in solid-state materials
science.” Computational Materials, vol. 5, Aug. 2019.
https://doi.org/10.1038/s41524-019-0221-0.

6.	 Abu, Mohd Azlan et al. “A study on Image Classification
based on Deep Learning and Tensorflow.” International
Journal of Engineering Research and Technology, vol.
12, no. 4, 2019, pp. 563-569.

7.	 Raschka, Sebastian and Vahid Mirijalili. Python Machine
Learning. 3rd ed., Packt Publishing, 2019. Falksangdata,
falksangdata.no/wp-content/uploads/2022/07/python-
machine-learning-and-deep-learning-with-python-scikit-
learn-and-tensorflow-2.pdf. Accessed 30 June 2023.

8.	 Mugisha, Stephen. “Particle collisions.” Kaggle, www.
kaggle.com/datasets/stephenmugisha/particle-collisions.
Accessed 21 June 2023.

9.	 Amrouche, Sabrina et al. “The Tracking Machine
Learning Challenge : Accuracy phase.” The NeurlPS
‘18 Competition, 30 Nov. 2019, pp. 231-264. https://doi.
org/10.1007/978-3-030-29135-8_9.

10.	 Chu, Carlton et al. “Does feature selection improve
classification accuracy? Impact of sample size and
feature selection on classification using anatomical
magnetic resonance images.” NeuroImage, vol. 60,
no. 1, Mar. 2012, pp. 59-70. https://doi.org/10.1016/j.
neuroimage.2011.11.066.

11.	 Gbenga Ajayi, Oluibukun and John Ashi. “Effect of varying
training epochs of a Faster Region-Based Convolutional
Neural Network on the Accuracy of an Automatic
Weed Classification Scheme.” Smart Agricultural
Technology, vol. 3, Feb. 2023. https://doi.org/10.1016/j.
atech.2022.100128.

12.	 Dietterich, Thomas G. and Ghulum Bakiri. “Solving
Multiclass Learning Problems via Error-Correcting Output
Codes.” Journal of Artificial Intelligence Research, vol. 2,
Jan. 1995, pp. 263-286. https://doi.org/10.1613/jair.105.

13.	 Griffiths, David J. Introduction to elementary particles.
2nd ed., Wiley, 2008. CERN, cds.cern.ch/record/111880.
Accessed 26 July 2023.

14.	 Hirahara, Daisuke et al. “Effects of data count and
image scaling on Deep Learning training.” PeerJ
Computer Science, vol. 6, no. 312, Nov. 2020. https://doi.
org/10.7287/peerj-cs.312v0.2/reviews/2.

15.	 Nakra, Rohan. “AI Predicts Handwritten Digits.” Github,
github.com/rohannakra/AI-Predicts-Hand-Written-Digits.
Accessed 21 June 2023.

16.	 Hasanpour, Seyyed Hossein et al. “Lets keep it simple,
Using simple architectures to outperform deeper and
more complex architectures.” arXiv, Apr. 2023. https://doi.
org/10.48550/arXiv.1608.06037.

17.	 Aamodt, Kjeld et al. “Production of pions, kaons and
protons in pp collisions at √s=900 GeV with ALICE at
the LHC.” The European Physical Journal C, vol. 71, no.
1655, Jun. 2011. https://doi.org/10.1140/epjc/s10052-
011-1655-9.

18.	 Fantahun, Kebur et al. “Classification of Pixel Tracks
to Improve Track Reconstruction from Proton-Proton
Collisions.” SMU Scholar, vol. 6, no. 2, Sep. 2022.

19.	 Tüysüz, Cenk et al. “Hybrid quantum classical graph
neural networks for particle track reconstruction.”
Quantum Machine Intelligence, vol. 3, no. 2, Dec. 2021.
https://doi.org/10.1007/s42484-021-00055-9.

20.	 Harris, Charles R. et al. “Array programming with NumPy.”
Nature, vol. 585, Sep. 2020, pp. 357-362. https://doi.
org/10/1038/s41586-020-2649-2.

21.	 Buitinck, Lars et al. “API Design for Machine
Learning Software: Experiences from the Scikit-Learn
Project.” arXiv, Sep. 2013. https://doi.org/10.48550/
arXiv.1309.0238.

22.	 Van Rossum, Guido. The Python Library Reference,
Release 3.8.2. Python Software Foundation, 2020.
Massachusetts Institute of Technology, py.mit.edu/_static/
spring21/library.pdf. Accessed 30 June 2023.

23.	 John D. Hunter. “Matplotlib: A 2D Graphics Environment.”
Computing in Science & Engineering, vol. 9, no. 3, May
2007, pp. 90-95. https://doi.org/10.1109/mcse.2007.55.

24.	 Abadi, Martín et al. “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems.” arXiv, Mar. 2016.
https://doi.org/10.48550/arXiv.1603.04467.

25.	 Wickham, Hadley et al. “readr: Read Rectangular
Text Data.” CRAN, cran.r-project.org/package=readr.
Accessed 19 June 2023.

26.	 Wickham, Hadley et al. “Welcome to the Tidyverse.”
Journal of Open Source Software, vol. 4, no. 43, Nov.
2019, pp. 1686. https://doi.org/10.21105/joss.01686.

27.	 Wickham, Hadley. ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York, 2016. ggplot2,
ggplot2.tidyverse.org. Accessed 19 June 2023.

Copyright: © 2023 Nakra, Vansomphone and Kimes. All JEI
articles are distributed under the attribution non-commercial,
no derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

