
OCTOBER 25 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

Article

involved in complex environments may take months to train
to an acceptable accuracy. A major reason for such resource
cost is the often-high amount of training data necessary to
effectively and quickly train an RL model (8). This represents
a major problem with current machine learning algorithms,
as high resource and time costs limit the feasibility of RL in
complex situations and edge computing. In order to achieve
efficient RL training, it is helpful to reduce the amount of
training data used during the RL training process. A smaller
amount of training data will enable RL models to train in less
time and with less memory.

	 The training data of an RL model is stored in a replay buffer
as entries, with each entry having the following composition:
(S1, A, S2, R) (9). This entry is a datum explaining how an
action (A) being taken in a certain state (S1) will lead to a
new state (S2), and what reward (R) that change in states will
cause. A large replay buffer, currently necessary for effective
model training, creates a hardware inefficiency in RL,
requiring both more memory and more time to train. Reducing
the size of the replay buffer through pruning can remedy this
inefficiency. This study focused on reward (R), how it relates
to the improvement that the entry will bring to the model, and
how this information can be applied to replay buffer pruning
(Figure 1).

	 There has been much work in the past on the subject of
pruning reinforcement learning algorithms concerned with
decreasing the amount of data, time, and resources required
to effectively train an algorithm. However, current techniques

Pruning replay buffer for efficient training of deep
reinforcement learning

SUMMARY
Reinforcement learning (RL) is a type of machine
learning that develops artificial intelligence by
training an algorithm through multiple generations
to understand what strategies to use in various
situations. RL has applications in virtually every
field, from transportation to research. However,
RL is limited in that it is very resource intensive,
partially because of the necessity of a large replay
buffer, which contains the data learned from each
episode. This study provides knowledge on replay
buffer reward mechanics to inform the creation of
new pruning methods for improving RL efficiency.
Specifically, we develop a novel approach designed
to reduce storage complexity of the replay buffer and
training data and thus improve model efficiency. We
create three algorithms, Threshold Replay Buffer
Pruning (TRBP), Cluster Replay Buffer Pruning
(CRBP), and Inverse Threshold Replay Buffer Pruning
(ITRBP), for this purpose, testing three contradicting
theories on reward mechanics. We hypothesized that
TRBP’s theory would be the most conducive to real-
world conditions, which our results corroborated.
These results indicated that TRBP can achieve a
2-fold reduction in replay buffer size with only a 5%
reduction in score, while CRBP and ITRBP performed
much worse. This supported the hypothesis that
TRBP’s reward thesis is the most accurate out of
the three algorithms, as well as demonstrated that
TRBP is a potentially effective replay buffer pruning
algorithm.

INTRODUCTION
	 Reinforcement learning (RL) is an area of machine learning
concerned with the development of algorithms capable of
making decisions that maximize a defined reward in a given
situation. In the real world, RL leads the way in developing self-
driving technology and industrial automation (1, 2). It is used
in healthcare, where RL systems can recommend treatments
to patients and develop new medications (3). RL can control
a traffic grid, tell investors how to manage their portfolios, and
more effectively and accurately inform governments on the
state of their economy (4, 5, 6). As such, RL is an immensely
powerful tool.

	 A major limiting factor in RL is its high running cost, as
training an effective model can take weeks to months and
require terabytes of memory (7). Often, it is impractical to
train on mobile devices or low-end computers, and algorithms

Gavin An1, Sai Qian Zhang2

1 Madison West High School, Madison, Wisconsin
2 Harvard University, Cambridge, Massachusetts

Figure 1: Explanation of replay buffer pruning and its theoretical
effects on algorithm performance. Original replay buffer is larger
and leads to slower training, but after it is passed through the pruning
algorithm, it is condensed, leading to faster training due to fewer
sampled entries.

OCTOBER 25 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-068

focus on creating more efficient ways to train algorithms rather
than pruning training data itself. Agapiou et al. developed
a novel way of reducing training time with their Deep
Q-Learning from Demonstrations (DQfD) algorithm (10). DQfD
accomplishes this reduction by introducing demonstration
data into the algorithm's pre-training phase, which allows the
algorithm to imitate the demonstrator and apply its learned
policy in the scene, giving it a head start in forming an
effective score-maximizing strategy. DQfD introduces new,
more effective training data as learning catalysts, but does
not prioritize pruning existing training data to lower resource
costs, leaving some room for efficiency improvements.
Sokar et al. contributed to solving this problem as well with
their dynamically adapting neural network that significantly
reduced its size while improving its learning speed (11). They
achieved their method, Dynamic Sparse Twin Delayed Deep
Deterministic policy gradient (DS-TD3), through innovative
sparse topologies and neural networks, allowing faster training
while achieving a better performance than its counterparts.
DS-TD3, like DQfD, also does not focus on pruning training
data, but rather the neural networks themselves, leading to
similar limitations. Group-Sparse Training (GST) focuses on
achieving better performance on mobile devices, which are
primarily limited by memory bandwidth (12). Using GST and
reward-aware pruning (RWP), the compression ratios and
stability of training are simultaneously increased. GST and
RWP tackle the same mobile device efficiency problem as
this paper does but focus on improving model compression
methods rather than pruning the replay buffer of such
algorithms. Livne et al. developed one of the first techniques,
Policy Pruning and Shrinking (PoPS), which can train DNNs
capable of retaining strong performance after each pruning
process (13). This performance is possible due to the ability
to identify and preserve the most important information of
the model while removing redundancies, creating a compact
yet effective version of the initial DNN. PoPS can effectively
prune DNNs, but just as with other models, it lacks the
ability to prune training data in the same way. The Rigged
Reinforcement Learning Lottery (RLx2) applied ultra-sparse
networks to achieve model compression (14). A variety of
different mechanisms, such as a dynamic-capacity replay
buffer and gradient-guided topology search scheme, work in
tandem to achieve such results. RLx2 again focuses on the
neural network itself, not on the similarly important training
data.

	 In comparison, this paper focuses on a virtually unexplored
field in AI, aiming at pruning training data contained in the
replay buffer during the exploration phase rather than during
the training phase. As such, the results, methodology, and
algorithms of our paper could not be easily compared to those
of other papers.

	 To test the importance of the characteristics of the
reward, we built three novel pruning algorithms based on
three different and contradictory theories about replay buffer
reward. We built the first algorithm, Cluster Replay Buffer
Pruning (CRBP), on the theory that every reward is equally
valuable to the model, no matter its absolute value. Thus,
the pruning algorithm ensures that representative entries are
kept with high and low absolute value rewards. Intuitively, this
theory could be justified as both extreme and neutral rewards

having an important part in a model, with the extremes giving
big-picture guidelines and neutral reward entries providing
finer-tuned tweaks.

	 We built the second algorithm, Threshold Replay Buffer
Pruning (TRBP), on the theory that the higher the absolute
value of the reward or punishment, the more valuable the
reward is to the training of the model. Thus, the pruning
algorithm removes low absolute value reward entries first.
Intuitively, this theory could be justified as higher rewards
show what strategies work and what strategies really do not.
This is more valuable to the training of a model than an entry
that shows a neutral strategy.

	 We built the third algorithm, Inverse Threshold Replay
Buffer Pruning (ITRBP), on the theory that the higher the
absolute value of a reward, the less valuable the reward is to
the training of the model. Thus, the pruning algorithm removes
high absolute value reward entries first. Intuitively, this theory
could be justified as extreme rewards being outliers, and
less likely to be applicable to a model's situation than neutral
rewards. More detailed information on all used models can be
found in the appendix.

	 We chose to create three separate algorithms because it
would allow us to test the performance of each type of reward
entry (high absolute value of R to low) individually, which
would allow us to conclude which was most important to a
model’s performance. We hypothesized that TRBP would be
the most effective because it prioritizes more extreme value
entries. We believed the theory behind it was most plausible,
and that extreme entries provide more information to the
model on which strategies were successful than more neutral
value entries.

	 We tested the algorithms using a game called Lunar
Lander, provided by OpenAI, in which the player controls a
small lander and attempts to land it on the moon (15). Landing
closer to the targets and at a more level angle results in a
higher score. After each episode, the game resets so the
model can play again. We found that when TRBP pruned
50% of the replay buffer, the score decreased by only 5%,
while the scores of CRBP and ITRBP were noticeably lower.
These results demonstrated the viability of reward-based
replay buffer pruning as a pruning strategy and showed that
the theory behind TRBP’s algorithm is most accurate.

RESULTS
	 We tested the algorithm with the Lunar Lander game. One
episode represents one training cycle, in which 64 games
of Lunar Lander are played before the model is updated to
learn from its experience. We ran these algorithms for 300
episodes, 3 times each, and took the average of the three
at 25-episode intervals. We set the algorithms to have a
pruning ratio of 50%, meaning that 50% of the entries in the
replay buffer would be removed each update. Comparing the
effectiveness and scores of these pruning algorithms with the
scores of the unpruned algorithm and a pruning algorithm
which randomly removes entries, Random Replay Buffer
Pruning (RRBP), as controls indicated which reward theory
was more accurate.

OCTOBER 25 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-068

	 Though most of the algorithms started by achieving
around the same in-game score, we saw more variations
as the game proceeded and the algorithms began to learn
(Figure 2). The unpruned algorithm improved its score by
210.72 over the course of 300 episodes, at an average rate of
0.70 per episode. It reached a positive score by episode 275
and an end score of 34.8. RRBP improved its score by 171.74
over the course of 300 episodes, at an average rate of 0.57
per episode. It never reached a positive score and achieved
an end score of -37.23. CRBP improved its score by 141.2
over the course of the 300 episodes, at an average rate of
0.47 per episode. It never reached a positive score and had
an end score of -31.61. TRBP improved its score by 195.3
over the course of 300 episodes, at an average rate of 0.65
per episode. It reached its first positive score at 300 and had
an end score of 22.7. ITRBP saw a score decrease of 34.09
over the course of 300 episodes, at an average rate of -0.11
per episode. It never reached a score greater than -100 and
had an end score of -211.09.

	 We calculated standard deviation by determining how
much the average score of a given algorithm’s run deviated
from the average score of all three runs. The standard
deviations of the first four algorithms (unpruned, RRBP, CRBP,
TRBP) were similar: 17.97, 22, 19, and 26.11 respectively.
However, the average standard deviation of ITRBP was
much higher, reaching 49.41. It is unclear why the neutral-
prioritizing algorithm varied so dramatically compared to the
other algorithms, especially RRBP, but the reason could be
tied to the poor performance of the algorithm. Perhaps luck
is a bigger factor in the score of an algorithm with few good
strategies than one that has a clearer plan of how to act.

	 Comparing these algorithms established TRBP as the
most effective at increasing RL efficiency. TRBP ended with
a slightly lower score than the unpruned algorithm, but with a
much higher score than cluster pruning and random pruning,
which both had similar scores. All performed dramatically

better than inverse threshold pruning (Figure 2).

	 By the end of the 300 episodes, TRBP performed better
than RRBP. We saw a clear improvement of almost 60
between the end scores of TRBP and RRBP. TRBP pruning
achieved a roughly 14% higher total improvement, and a
score after 25 episodes (the first recorded, or initial score)
that was 36.37 higher than random pruning. TRBP also
performed better than cluster pruning in almost all areas.
TRBP achieved a 54.31 increase in end score, with a 38%
higher total improvement, though both algorithms had almost
identical scores after 25 episodes. In comparison to the
unpruned algorithm, TRBP only performed slightly worse,
despite having half the training data. While total improvement
was around 7% less, the end score of TRBP was only
12.1 less than the unpruned algorithm, with an initial score
difference of only 3.32. In contrast, RRBP saw a decrease
of 18.4% in total improvement, with an end score difference
of 72.03 and an initial score difference of 33.05. Meanwhile,
the ITRBP pruning algorithm performed poorly. Despite
having a similar initial score to other algorithms, its score
consistently deteriorated after the 150-episode mark. It is the
only algorithm to have achieved a lower end score than initial
score, and to have never risen above -100 (Figure 2).

DISCUSSION
	 The results of our experiments corroborate our hypothesis
that TRBP’s reasoning is most accurate under the tested
conditions. Since the algorithm built on prioritizing extreme
rewards performed better than those prioritizing all rewards
equally, it can be inferred that in Lunar Lander, extreme
rewards are more helpful to optimizing score than neutral
rewards are. This conclusion is further strengthened by the
fact that ITRBP, which operates with a theory opposite to
TRBP and only learns on neutral reward entries, performed
very poorly, likely for the same reason. On the other hand, the
performance of CRBP, which values both types of rewards
equally, was not very different from that of RRBP. Additionally,

 Figure 2: The unpruned model and TRBP achieved the best scores over time. Line graph showing all algorithms’ performance in the
form of score. RL was run on Lunar Lander for 300 episodes with various pruning buffer algorithms. Score data was collected and averaged
from 3 runs every 25 episodes, then plotted. Error bars represent standard deviation.

OCTOBER 25 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-068

this data shows that TRBP is a relatively viable algorithm in
the conditions tested to reduce the amount of training data
required for a model to learn. It performs at a level similar to
the unpruned algorithm with half the training data and runs
much more accurately than RRBP, legitimizing itself as well
as replay buffer pruning.

	 There were two abnormalities in the results. TRBP only
began improving over RRBP from Episode 230 onwards
(Figure 2). This may be due to the nature of reinforcement
learning. At the beginning of the simulation, all entries in the
replay buffer will have very low rewards, since the algorithms
have not created a good strategy yet. Since TRBP prioritizes
high absolute value of rewards, it will always prioritize the
extremely low rewards rather than the entries with improved
rewards that grow closer to zero but are still negative. However,
as the simulation progresses, the algorithm’s rewards will also
increase, until it is able to prioritize high value rewards as well
as low entry rewards. This causes it to improve at a much
faster rate. Another abnormality is that the standard deviation
of ITRBP was higher than that of other algorithms. This could
be due to ITRBP’s poor performance. If the algorithm is
unable to create a good strategy, luck may play a far greater
role in its performance than that of an algorithm with a good
strategy.

	 There are several potential biases that could have
influenced the results of this experiment. First, each algorithm
was only run three times, which may not be enough to
sufficiently remove the element of random chance within the
experiment. Additionally, the algorithms were only run for
300 episodes each, which may not have been long enough
to determine the true effectiveness of each algorithm.
The environment of the game, Lunar Lander, is also a
limitation. Lunar Lander is a straight-forward game in that
the parameters for success are clear – angle of landing, and
distance to target. Minimizing both will always lead to a higher
score, and thus is a better strategy. In more complex games,
like racing or strategy games, the parameters of success are
less clear. The consequences of important choices in these
games may take longer to fully realize, and thus seem neutral
at first. Thus, Lunar Lander’s simplicity may make TRBP more
helpful than it would be in more complex games. Finally, the
pruning ratio (that is, the percentage of the replay buffer that
is removed) was tested at only 50%. The various algorithms
could perform differently at different levels of pruning, such as
25% or 90%. If replicated, future experiments should increase
the number of runs per algorithm, increase the number of
episodes per run, and vary the pruning ratio and environment
each algorithm was tested on.

	 Future work could be done on developing more complex
algorithms around replay buffer pruning, as well as discovering
new mechanics and interactions between the various parts of
the replay buffer to better inform these future algorithms. As
for TRBP, it could be further tested and expanded upon to
become more effective. Replay buffer pruning is a powerful
tool in the RL sphere that should be investigated further,
especially to increase efficiency and decrease the size of RL
models.

	 This study touched upon the power of replay buffer

pruning and the mechanics of reward within the replay buffer.
The study also shows the effectiveness of TRBP as a pruning
model under the conditions studied, demonstrates that
extreme reward entries are more valuable to the training of a
model than neutral reward entries, and serves as a proof of
concept for future work on this topic.

MATERIALS AND METHODS
	 The baseline machine learning model was created using
PyTorch in Google Colab, with a batch size of 64 and a buffer
size of 100,000. In order to increase the speed at which the
code would run, the provided GPU notebook setting in Colab
was used. A basic RL model and algorithm were created,
consisting of three linear layers: an input, a hidden, and an
output. Then, four novel pruning algorithms were applied and
tested on the model: the three experimental algorithms, and
the control algorithm that randomly pruned. These algorithms
were built and coded in the same Python environment that
the baseline model was created in, and more details about
them can be found in the appendix. All algorithms were tested
with a 50% pruning ratio. This ratio was achieved by applying
an r parameter (the maximum or minimum absolute value of
a reward before pruning for ITRBP and TRBP respectively) of
about 1.6 for ITRBP and TRBP, while four clusters were used
for CRBP. Each algorithm was run 3 times to help eliminate
the randomness of the experiment, with each run consisting
of 300 episodes, with data collected and averaged every
25 episodes. Results were compared to each other and the
unpruned algorithm. More details on the model can be found
on the GitHub page in the appendix.

Statistics
	 We graphed and recorded the data using Google Sheets.
We calculated standard deviation by determining how much
the average score of a given algorithm’s run deviated from the
average score of all three runs.

Received: April 3, 2023
Accepted: October 17, 2023
Published: October 25, 2023

REFERENCES
1.	 Heaven, Will Douglas. “The Big New Idea for Making Self-

Driving Cars That Can Go Anywhere.” MIT Technology
Review, MIT Technology Review, 27 May 2022,
www.technologyreview.com/2022/05/27/1052826/ai-
reinforcement-learning-self-driving-cars-autonomous-
vehicles-wayve-waabi-cruise/. Accessed 10 Mar, 2023.

2.	 “Business value of autonomous systems” Microsoft AI,
www.microsoft.com/en-us/ai/autonomous-systems-
solutions. Accessed 10 Mar, 2023.

3.	 Liu, Siqi, et al. “Reinforcement Learning for Clinical
Decision Support in Critical Care: Comprehensive
Review.” Journal of Medical Internet Research, vol. 22,
no. 7, Jul. 2020, https://doi:10.2196/18477

4.	 Tan, Tian, et al. “Cooperative Deep Reinforcement
Learning for Large-Scale Traffic Grid Signal Control.”
IEEE Transactions on Cybernetics, vol. 50, no. 6, 2020,
pp. 2687–2700. https://doi:10.1109/tcyb.2019.2904742

5.	 Mohammad, Shareefuddin, et al. “Embracing advanced
AI/ML to help investors achieve success: Vanguard

OCTOBER 25 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-068

Reinforcement Learning for Financial Goal Planning.”
Arxiv, Oct. 2021, https://doi:10.48550/arXiv.2110.12003

6.	 Charpentier, Arthur, et al. “Reinforcement Learning in
Economics and Finance.” Computational Economics,
Apr. 2021, https://doi:10.1007/s10614-021-10119-4

7.	 Sharir, Or, et al. “The Cost of Training NLP Models:
A Concise Overview.” Arxiv, 19 Apr. 2020, https://
doi:10.48550/arXiv.2004.08900

8.	 Yang, Shuo, et al. “Dataset Pruning: Reducing Training
Data by Examining Generalization Influence.” Arxiv, 27
Feb. 2023, https://doi.org/10.48550/arXiv.2205.09329

9.	 “Replay Buffers.” TensorFlow, www.tensorflow.org/
algorithms/tutorials/5_replay_buffers_tutorial.

10.	 T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,
B. Piot, A. Sendonaris, G. Dulac-Arnold, I. Osband, J.
Agapiou, J. Z. Leibo, and A. Gruslys, “Learning from
demonstrations for real world reinforcement learning,”
arXiv preprint arXiv:1704.03732, 2017.

11.	 G. Sokar, E. Mocanu, D. C. Mocanu, M. Pechenizkiy, and
P. Stone, “Dynamic sparse training for deep reinforcement
learning,” arXiv preprint arXiv:2106.04217, 2021.

12.	 J. Lee, S. Kim, S. Kim, W. Jo, and H.-J. Yoo, “Gst: Group-
sparse training for accelerating deep reinforcement
learning,” arXiv preprint arXiv:2101.09650, 2021.

13.	 D. Livne and K. Cohen, “Pops: Policy pruning and
shrinking for deep reinforcement learning,” IEEE Journal
of Selected Topics in Signal Processing, vol. 14, no. 4,
pp. 789–801, 2020.

14.	 Y. Tan, P. Hu, L. Pan, and L. Huang, “Rlx2: Training a
sparse deep reinforcement learning model from scratch,”
arXiv preprint arXiv:2205.15043, 2022.

15.	 Sweeney, Tim. “Lunar Lander - Open Ai.” Lunar Lander
- Open AI, Weights & Biases, 15 Oct. 2020, wandb.ai/
timssweeney/lunar-lander/reports/Lunar-Lander-Open-
AI--VmlldzoyNzg5NjE.

Copyright: © 2023 An and Zhang. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

APPENDIX
Github Code Link: https://github.com/destroyer000lucky/
Gymnasium/blob/main/ReplayBufferPruningCode.ipynb

Random Reply Buffer Pruning (RRBP)
RRBP runs through each entry in the replay buffer and
generates a random number between zero and one. In the
case of a 50% pruning ratio, if the number was above 0.5,
then the entry would be deleted. Otherwise, it would continue
to be used for training the model.

Cluster Replay Buffer Pruning (CRBP)
CRBP takes in two inputs: the number of clusters (groups that
the replay buffer is split into), and the percentage pruned from
each one. The algorithm then sorts entries based on reward
into a corresponding cluster, each representing an equal
interval between zero and one as well as one cluster each
for rewards greater than one or less than negative one. Then,
each cluster is randomly pruned to the percentage specified

by the user.

Threshold Replay Buffer Pruning (TRBP)
TRBP takes in a threshold variable r. It runs through each
entry in the replay buffer, comparing its reward to the r. If
the reward is between -r and r, then the entry is removed.
Otherwise, it continues training the model. In this experiment,
r was selected to be a constant value achieving a pruning ratio
of 50% in order to be consistent with the other algorithms. In
this case, this constant was 1.6.

Inverse Threshold Reserve Buffer Pruning (ITRBP)
IRBTP takes in a threshold r. It runs through each entry in the
replay buffer, comparing its reward to the r. If the reward is
not between -r and r, then the entry is removed. Otherwise,
it continues training the model. In this experiment, r was
selected to be a constant value achieving a pruning ratio of
50% to be consistent with the other algorithms. In this case,
this constant was 1.6.

