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Article

combination of novel machine learning algorithms, increased 
computational power, and inexpensive data storage have 
promised to revolutionize ethological studies by training 
computers to automatically evaluate animal behavior (2-4). 
 A prominent example is DeepLabCut, a software developed 
for pose estimation based on transfer learning with deep neural 
networks (2, 3). This is a markerless approach because it 
does not require introducing any apparatus or physical labels 
on the animals themselves, which may interfere with their 
natural behavior. This program was developed as a substitute 
for labor-intensive human annotation of animal body parts 
in video frames, so manual labor is restricted to annotating 
minimal training data, typically 50-200 video frames. The 
DeepLabCut model is then trained through supervised 
learning with these training data, enabling it to predict the 
location of body parts in all other frames automatically. 
Supervised learning refers to a machine learning procedure 
where neural network weights are adjusted according to 
labels in the training data. As a result, DeepLabCut could 
provide a robust and accurate annotation of body parts as 
human labeling for mice, monkeys, and macaques (2, 3, 
5, 6). Additionally, only a small number of parameters are 
needed to obtain accurate results. These results suggest 
the promising potential of using deep learning algorithms for 
animal behavioral analysis, but it is essential to evaluate the 
accuracy of such machine-generated annotations when the 
algorithm is exposed to new data. 
 Sheep are a commonly studied species in spinal cord injury 
research due to their large spinal cord size, which serves as 
a useful anatomical surrogate for humans (7). In particular, 
investigating the gait cycle of sheep walking on a treadmill is 
a widespread method that can be used to examine the impact 
of electrical stimulation on kinematics. Electrical stimulation 
can also be used as a therapy to improve locomotor function, 
as in the case of Parkinson’s patients. Automatic evaluation 
of animal behavior can also help in the case of animals that 
undergo surgery for diagnoses, potential treatments, and 
recovery assessment. 
 The traditional and manual experimental approach requires 
an expensive motion-capturing system to automatically obtain 
the coordinates of each body part from video frames for 
reconstructing the gait cycle. While it is technically possible 
to annotate body parts manually for each frame without such 
a motion-capturing system, this would require a significant 
amount of human labor (2, 4). For example, continuous 
manual annotation of 1 minute of the gait cycle with 6 body 
parts would require working on 1,200 frames at a recording 
frequency of 20Hz. Such annotations require about 5 hours 
of human work. In contrast, after training, machine learning 
algorithms would take a fraction of a second for the same 
number of labels.

Recognition of animal body parts via supervised 
learning

SUMMARY
The application of machine learning techniques has 
facilitated the automatic annotation of behavior in 
video sequences, offering a promising approach 
for ethological studies by reducing the manual 
effort required for annotating each video frame. 
Nevertheless, before solely relying on machine-
generated annotations, it is essential to evaluate 
the accuracy of these annotations to ensure their 
reliability and applicability. While it is conventionally 
accepted that there cannot be a perfect annotation, 
the degree of error associated with machine-
generated annotations should be commensurate 
with the error between different human annotators. 
We hypothesized that machine learning supervised 
with adequate human annotations would be able to 
accurately predict body parts from video sequences. 
Here, we conducted a comparative analysis of 
the quality of annotations generated by humans 
and machines for the body parts of sheep during 
treadmill walking. For human annotation, two 
annotators manually labeled six body parts of sheep 
in 300 frames. To generate machine annotations, we 
employed the state-of-the-art pose-estimating library, 
DeepLabCut, which was trained using the frames 
annotated by human annotators. As expected, the 
human annotations demonstrated high consistency 
between annotators. Notably, the machine learning 
algorithm also generated accurate predictions, with 
errors comparable to those between humans. We also 
observed that abnormal annotations with a high error 
could be revised by introducing Kalman Filtering, 
which interpolates the trajectory of body parts over 
the time series, enhancing robustness. Our results 
suggest that conventional transfer learning methods 
can generate behavior annotations as accurate as 
those made by humans, presenting great potential for 
further research.

INTRODUCTION
 Traditionally, the assessment of animal behavior has 
relied on vast amounts of human labor by manual scrutiny of 
animals in natural habitats or video sequences. For example, 
in a memory study conducted in 1982, human annotators 
manually recorded the time rats took to find a fixed location 
(1). However, such manual annotations are error-prone, 
difficult to reproduce, and remain a primary bottleneck in the 
systematic analysis of animal behavioral data (2). Recently, a 
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 In this study, we evaluated the effectiveness of using 
DeepLabCut for automated annotation of the body parts of 
sheep. We tested our hypothesis that supervised learning 
would suffice to extract body parts in moving animals from 
video data. The first step was to obtain human annotations for 
the DeepLabCut models to be trained with (2, 3). Annotating 
individual video frames takes humans approximately 5 
hours per minute of video. Given the large cost of manual 
annotation, we aimed to assess the minimum amount of 
annotations that would suffice to train robust machine learning 
algorithms. Additionally, we wanted to compare differences 
between humans and also differences between humans and 
machines. Thus, we decided to consider two independent 
human annotators. We investigated whether the machine-
generated annotations of each body part could match the 
range of locations annotated by multiple human annotators, 
and thus provide a reliable annotation for research purposes. 
Our supervised machine learning algorithm generated 
accurate predictions, with errors comparable to those 
observed between human annotators. We also implemented 
a method to overcome errors due to occlusion. Our results 
suggest that conventional transfer learning methods can be 
effective in generating reliable annotations for sheep walking 
on a treadmill, and thus can be applied in spinal cord injury 
research with great potential. In the future, similar approaches 
might be applied to human behavior and motor injury recovery.

RESULTS
Annotations by different humans were consistent with 
each other
 In this study, we aimed to compare the consistency 
between annotations generated by human annotators and 
the DeepLabCut toolbox in the analysis of sheep treadmill 
videos from three different angles (Figure 1a). The human 
annotations were obtained by asking two independent human 
annotators to label the locations of six body parts (foot, 

knee, and thigh of left and right legs) in 150 video frames. 
These frames were split into training (80%) and testing (20%) 
datasets, with the DeepLabCut toolbox being trained on the 
former and used to predict body part locations in the latter 
(Figure 1b).
 To assess the consistency between human annotations, 
we calculated the Euclidean distance between labels for the 
same body part in each frame (Figure 2). In some frames, 
the annotations made by both human annotators almost 
completely overlapped within a few pixels (Figure 2a, top). 
In most frames, there was a noticeable discrepancy between 
the two annotations (Figure 2a, bottom). Across all body parts 
and recording angles, the average distance between the two 
human annotations was 21.3 ± 18.6 pixels (Figure 2b; frame 
size = 880 x 620 pixels). This difference is well below what 
one would expect from random annotations, which would lead 
to an average distance of 390.3 ± 194.3 pixels (p < 10-20). 
The average distance under the null hypothesis of random 
annotations was obtained by simulating random predictions 
the same number of times as human annotations (150 frames 
x 6 body parts x 2 annotators = 1800 times). In addition, 
the average error within each condition was smaller than 
the average distance between body parts (knee-foot: 149.2 
pixels, thigh-knee: 184.2 pixels, thigh-foot: 333.4 pixels), 
implying a consistent level of human annotation (Figure 2c).

Computer predictions matched human annotations in 
test frames
 To validate the consistency of our model annotations, 
an additional set of 20 frames for each camera angle was 
selected at random from video recordings and was annotated 
by both human annotators and the trained models (Figure 
3a). It is noteworthy that these frames were not utilized during 
the training phase of the DeepLabCut models, providing 
an opportunity for cross-validation. The Euclidean distance 
between computer-generated annotations and human 
annotations (15.3 ± 25.0 pixels, average of the distribution) was 

Figure 1: Schematic of the overall research approach. a) Example frames showing the three different camera angles to visualize the 
right posterior, left posterior, and posterior of the animal. These frames were used to train DeepLabCut. b) Top image is an example frame 
annotated by a researcher. The annotator labeled 6 locations: left foot, left knee, left thigh, right foot, right knee, and right thigh. These labeled 
locations were fed to the DeepLabCut neural network (ResNet) for supervised training. The ResNet architecture is schematically illustrated 
here by a series of rectangular shapes that refer to each layer of the neural network. Only four of the 50 layers are shown here for simplicity. 
Bottom images show the predictions made by DeepLabCut for each body part on test frames that were not used for training.
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similar to the distance between the two human annotations 
(12.7 ± 9.6 pixels) for the validation set (Figure 3b). There 
was no statistically significant difference between these two 
distributions across all 6 body parts (p = 0.84). These findings 
suggest that the models were accurate in their predictions.

Computer predictions obtained from different annotators 

were consistent
 Next, we sought to evaluate the consistency between 
computer annotations generated by DeepLabCut and 
human annotations. Specifically, we trained two separate 
DeepLabCut models using the annotations generated by 
each human annotator (Figure 4a). Given the different 
training data, it is conceivable that the two models could lead 
to different results. We compared the predicted locations of 
body parts in the testing dataset by measuring the Euclidean 
distance between two points. In some frames, the annotations 
made by both DeepLabCut models were almost completely 
overlapped within a few pixels while there was a difference 
between the two annotations in most frames (Figure 4b).
 Across all camera angles and body parts, we found that 
the average distance error between the two computer models 
was significantly larger than the inter-human error (between 
models = 45.3 ± 67.6 pixels; between humans = 21.3 ± 18.6 
pixels; p < 10-12) (Figure 4c). Notably, the computer models 
showed varying levels of error across camera angles, with the 
lowest error observed for the posterior angle and the highest 
for the right posterior angle (posterior = 23.6 ± 31.4 pixels, 
left posterior = 47.3 ± 58.0 pixels, right posterior = 65.0 ± 92.1 
pixels) (Figure 4c). While the difference in error between 
computer models for the posterior angle was not significantly 
different from that of humans (p = 0.078), we observed a 
larger difference in error for the side-view recordings. This 
was primarily due to the occlusion of body parts by the rack of 
the treadmill, which made it difficult for the computer models 
to accurately annotate these parts.
 In summary, we found that DeepLabCut generated 
annotations that were comparably consistent with human 
annotations for the posterior view, where all body parts 
were observable in most frames. However, we observed a 

Figure 2: Consistency of human annotations. a) Top images are representative example frames showing similar annotations between both 
human annotators. Bottom images are example frames showing more inconsistent annotations between the human annotators. The average 
Euclidean distance (px) between annotations is written in each frame. Similar results were obtained for body parts not shown. In the case 
of consistent annotations (top), the two location labels tend to overlap and may be hard to distinguish. b) Distribution of distances between 
human annotations combined over all body parts and camera angles. The average distance between human annotations is 21.3 ± 18.6 pixels 
(denoted by the dashed line). Total number of annotations is 150 x 6 = 900. c) Distribution of Euclidean distances when separated into camera 
angles and into each body part. Here and subsequently: LP = left posterior angle, RP = right posterior angle, P = posterior angle, LF = left 
foot, LK = left knee, LT = left thigh, RF = right foot, RK = right knee, RT = right thigh. There was a small amount of variation in the degree 
of consistency between annotators across different camera angles but this did not reach statistical significance (p > 0.01, One-Way Anova 
test). There was a statistically significant difference in the degree of consistency across different body parts (p < 10-5, One-Way Anova test).

Figure 3: The neural network accurately predicted body parts 
for cross-validated test frames. a) An example frame in the 
cross-validation set with both human annotations and both model 
annotations. The predictions are similar. b) Distribution of distances 
between the DeepLabCut model predictions based on each of the 
two annotators (n = 120 frames x 6 body parts x 2 annotators). 
This comparison is based on test frames not used for training 
and validation in the prior sections. The dashed line represents 
the average Euclidean distance of 15.3 ± 25 pixels. The posterior 
view average distances are very similar (p = 0.51). The left and 
right posterior views were not as similar (p < 10-16 and p < 10-6, 
respectively), but this was most likely due to occlusion (see section, 
Difficulty in predicting the location of occluded body parts). 
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significant difference in error between computer models 
and human annotators for other camera angles, suggesting 
the influence of occlusion on the accuracy of computer 
annotations.

Difficulty in predicting the location of occluded body 
parts
 A larger error between computer models compared to 
that between human annotators was primarily observed 
from side view recordings (left and right posterior views), 
which frequently involve the occlusion of body parts across 
multiple frames (Figure 4). In frames where a body part was 
not visible, the human annotators did not label it, and it was 
consequently excluded from the calculation of the average 
Euclidean distance between human annotations. However, 
for such frames, the computer model predicted the location of 
the missing body part with a low confidence level, and these 
predictions were still considered in calculating the distances 
between computer models in the previous analysis (Figure 
5a, yellow dots predicting the location of the right thigh). It 
is noteworthy that, when the error distance between model 
predictions exceeded 200 pixels, 77.0% and 81.1% of model 
predictions for the left and right posterior views exhibited a 
confidence level of less than 0.1 on a scale of 0 to 1. When 
the confidence level was less than 0.1, the annotation was not 
visible in the video created by DeepLabCut. 
 In order to address the issue of erroneous predictions 
for frames where specific body parts are occluded, we 
implemented a solution involving Kalman filtering. This 
technique involves smoothing the trajectory of a given body 
part across neighboring frames over time, thereby minimizing 
the impact of sporadic or anomalous predictions (10). After 
applying the Kalman filter, the average Euclidean distance 
between an annotator and the model decreased for body 

Figure 4: Consistency of model annotations. a) Two sets of human annotations were used to train two separate DeepLabCut models 
and their predictions were compared. b) Top images are representative example frames showing similar annotations between both model 
predictions. Bottom images are example frames showing more inconsistent annotations between the model predictions. The average 
Euclidean distance (px) between annotations is written in each frame. Similar results were obtained for body parts not shown. In the case 
of consistent annotations (top), the two location labels tend to overlap and may be hard to distinguish. c) Top graph shows the distribution of 
distances between model annotations. The x-axis denotes the Euclidean distance between the two model annotations combined over all body 
parts and camera angles. The average distance between model predictions is 45.3 ± 67.6 pixels (denoted by the dashed line). Total number of 
annotations was 5,710 frames x 6 body parts x 3 camera angles = 102,780. Bottom graph shows the distribution of Euclidean distances when 
separated into camera angles (left posterior, right posterior, and posterior views) compared to human annotators. Inset indicates an example 
frame where two models predicted relatively distant locations for the same body part.

Figure 5: Kalman filtering enhances the annotation consistency. 
a) Frames at t - 1 second, t, and t + 1 second with model predictions 
of the right thigh (yellow dots) alongside revised predictions obtained 
through Kalman filtering of annotated locations over time (blue dots). 
The second image shows an example that the Kalman filtering 
improves the model annotation for the body part which is occluded 
in the frame. A green dot represents the human annotation as the 
ground truth. b) The temporal trajectory of model predictions in x- 
and y-coordinates over time for 2 seconds (blue and red) and the 
smoothed trajectory through Kalman filtering (black dashed lines). 
The observation covariance as a smoothing parameter was set to 
10, where an observation covariance of 0 indicates no smoothing. 
The black circles represent the human label for one annotator at that 
particular frame. c) Distance errors between the model predictions, 
the smoothed model predictions through Kalman filtering, and the 
human annotations. Original model predictions were not very similar 
to smoothed predictions after Kalman filtering (all: p < 10-14, LP: p < 
10-7, RP: p < 10-2 , and P: p < 10-5). Human annotations were more 
similar to smoothed model predictions after Kalman filtering (all: p < 
10-8, LP: p < 10-7, RP: p < 10-1, and P: p < 10-1).
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parts that were occluded. For example, for the right posterior 
camera angle, we applied the Kalman filter to smooth over the 
annotations labeling the right thigh (Figure 5a). An example 
of the improvement from Kalman Filtering can be seen in 
Figure 5b. Following the application of Kalman filtering, the 
average Euclidean distance between an annotator and the 
model decreased by 12.9 pixels (before Kalman Filtering 
127.5 ± 13.8 pixels, after Kalman Filtering 114.6 ± 25.2 pixels, 
11.2% change). It is noteworthy that the distance between 
DeepLabCut model predictions significantly decreased 
across all the cameras, indicating the improvement in the 
consistency of model annotations (Figure 5c; p = 2.5x10-14, 
1.4x10-7, 0.005, 8.1x10-5 for all cameras, left posterior, right 
posterior, posterior cameras, respectively). 

DISCUSSION
 Understanding continuous human and animal behavior is 
a gargantuan task that used to require tedious, error-prone, 
and laborious manual annotations from dedicated research 
assistants. The advent of Artificial Intelligence has provided 
modern tools to revolutionize neuroethology (4). Here we 
show that minimal human annotations can be used with 
DeepLabCut to automatically and precisely annotate body 
parts in footage of moving sheep. Given the successes of 
supervised machine learning in other domains ranging from 
clinical diagnoses to face recognition to discovering new 
galaxies, we hypothesized that DeepLabCut would create 
robust annotations, which could be more consistent, more 
precise, and faster than human annotations. More training 
data always helps in supervised learning approaches. 
Remarkably, even though we only annotated a total of 150 
frames per person, we observed that this amount of training 
data was sufficient for supervised training of DeepLabCut. 
This amount of data is consistent with other efforts using 
DeepLabCut (2, 3). Across 5,710 frames, two independent 
DeepLabCut models yielded consistent annotations and 
accuracy was verified in cross-validated test data. Of note, 
the evaluations were made on test data that were not used 
during the training process.
 One of the biggest challenges for DeepLabCut was 
occlusion. For example, the right leg could occlude the left 
leg in such a way that the left knee was not visible in the 
frame. Such occlusions led to the largest errors in localizing 
body parts and were typically associated with low confidence 
in the model’s prediction. This necessitates an additional 
iteration of post-processing conducted by human annotators 
and consequently leads to a notable reduction in the overall 
efficiency of automatic annotation algorithms. When a body 
part became occluded due to movement, we found that it often 
resulted in a big change in the computer prediction (often an 
erroneous annotation of a different body part or a different 
leg). This suggests that in cases where a specific body part is 
occluded due to movement in a frame, the model generates 
a prediction with a low confidence level and occasionally 
mislabels the location, leading to a larger error between the 
predictions of the two models. Indeed the videos generated 
by DeepLabCut omit predictions with confidence levels below 
0.1. As a potential solution, we implemented a Kalman filter 
that capitalizes on the temporal sequence to smooth the data 
and interpolate between frames. This procedure improved 
the predictions. The quality of model annotations could be 
improved by a straightforward temporal trajectory-based 

post-processing, which could be explored in further research 
on automatic annotation systems. Although we investigated 
the impact of filtering on calibrating occlusion within the 2D 
trajectory for each camera angle, it is noteworthy that a similar 
filtering process could also enhance the precision of 3D pose 
estimation, as it is used for converting multiple 2D trajectories 
into a 3D trajectory in another open-source toolkit, Anipose 
(8).
 Digital storage space has become relatively inexpensive, 
and there are excellent digital cameras available. Therefore, 
it is relatively straightforward to collect vast amounts of 
video sequences documenting animal behavior. In the past, 
manual annotation of such sequences was a prohibitive 
bottleneck (2-4). The astounding success of DeepLabCut 
with small amounts of training data, as demonstrated here, 
opens the doors to new possibilities in computational 
ethology. In addition, human annotations require a lot of time 
(approximately 5 hours per minute of video), while training 
DeepLabCut for the entire project took about 10 hours. After 
training, automatic annotations of entire videos took seconds. 
 In the future, it would be interesting to use 3D DeepLabCut 
to create predictions of movement in 3D. Given the fact that 
we already used 3 different camera angles simultaneously 
recording the movements, it would be useful to implement 
3D analysis to obtain better predictions of sheep movement. 
Another possible improvement could be to average two or 
more DeepLabCut models because this could lead to more 
accurate predictions. Ensembling models is a common 
approach in machine learning where one model can 
compensate for the failures of another model (5). It would 
also be interesting to assess whether the algorithm can 
extrapolate to different conditions such as changes in size, 
age, color, illumination, or walking speed. It is important to 
note that the results presented here are based on one sheep. 
It will be necessary to assess whether annotations in one 
animal can extrapolate to other animals in the future. There 
are also similar algorithms such as DeepPoseKit, and it 
would be interesting to compare the results across algorithms 
to assess which one provides more robust, accurate, and 
efficient predictions (9).
 We found DeepLabCut software to be accurate and 
robust in its predictions. DeepLabCut created annotations 
similar to those that a human would create. The approach 
could therefore be applied to predict the trajectory of human 
limbs and for the creation of prosthetic limbs. In particular, in 
the context of spinal cord injuries, there is strong interest in 
automatic approaches to rigorously quantify behavior for the 
purposes of diagnoses, treatment, and recovery assessment. 

MATERIALS AND METHODS
Study subjects
 All study procedures were conducted with the approval 
of the Brown University Institutional Animal Care and Use 
Committee and in accordance with the National Institutes of 
Health Guidelines for Animal Research. One female sheep 
(Ovis aries) was used for this study. The animal was kept in a 
separate cage in a controlled environment on a 12 h light/dark 
cycle with ad libitum access to water and was fed twice daily.

Human annotations
 The first step was to obtain human annotations for the 
DeepLabCut models to be trained with (2, 3). Two human 
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annotators separately labeled 6 body parts: left foot, left 
knee, left thigh, right foot, right knee, and right thigh (Figure 
1). These annotations encompassed 50 frames for each 
one of 3 camera angles (Figure 1a). Thus, there were 150 
frames to annotate with 6 body parts each. If a body part was 
occluded, the human annotator did not annotate it, so the 
final numbers were 279, 224, and 199 total annotations out 
of 300 per camera. The annotations were performed using 
DeepLabCut’s labeling feature. The frames were selected 
at random by DeepLabCut and were sampled uniformly in 
order to obtain times when the sheep were moving and when 
they were still. Frames were extracted from videos of sheep 
walking on a treadmill. 
 The videos were then analyzed and labeled by the 
DeepLabCut (v.2.2.2) model (see Evaluating the neural 
network for details). Each video (3 in total) contained 5,710 
frames. Each frame was 880 x 620 pixels with RGB colors. 
To annotate the body parts, there was minimal discussion 
between the two human annotators regarding part definitions. 
If a human annotator deemed a body part to be occluded, 
they did not label it, and it was not taken into account when 
calculating the average Euclidean distance between human 
annotations. To cross-validate and test the neural networks, 
each human annotator labeled 20 more frames per camera 
angle (60 in total), which were again randomly selected by 
DeepLabCut. 

Training the neural network
 Each of the two sets of human annotations was used to 
train a separate DeepLabCut model (2, 3) (Figure 4a). Each 
model was trained for 1 million epochs. Separate annotations 
were used for training and testing the DeepLabCut models. 
We used default DeepLabCut parameters for training: batch 
size = 8, training fraction = 0.95, network type = resnet50, 
augment = none, autotune = false, keepdeconvweights = true. 
An NVIDIA TITAN X GPU was used to train the DeepLabCut 
algorithm.

Evaluating the neural network
 The trained DeepLabCut model generated predictions and 
likelihoods for each body part in each of the 5,710 frames per 
camera angle (Figure 1b). We evaluated the neural network 
by comparing the DeepLabCut model predictions against the 
human annotations on independent test data for a subset of 
60 frames (20 per camera angle). In the labeled videos that 
DeepLabCut created, if the model’s likelihood for a certain 
point was below 0.1, the annotation was not shown in the 
video. However, points with low likelihoods were still taken 
into account in computing the distances between network-
created annotations.

Kalman filtering
 In order to fix potential errors due to occlusion, we 
smoothed the data using Kalman Filtering (10). The goal of 
the filtering was to remove network predicted outliers. The 
smoothing parameter was the observation covariance and 
set to 10, determined by a manual inspection. A higher 
observation covariance signifies that we had less confidence 
in the model’s predictions, creating a smoother line between 
points as shown in Figure 5b.
 The Kalman Filter smooths data according to the previous 
data point and current predictions from the model. The filter 

first uses the model’s prediction, updates it using the Kalman 
Gain and the State Updates Equation, and then predicts the 
new output (10). This was done for each computer-created 
prediction (6 body parts x 5,710 frames per camera angle). 

General statistics and analyses methods 
 To compare different annotators, we computed the 
Euclidean distance between their labels for the same body 
parts for model predictions and for human annotations. 
Through the paper we used the Wilcoxon rank-sum test to make 
comparisons between distributions. A difference between 
two distributions was considered to be statistically significant 
if the Wilcoxon rank-sum test yielded a p value less than 
0.01. These comparisons were made with human-annotated 
images that had not been used to train the DeepLabCut 
models. We compared the predictions made by models based 
on different annotations. These comparisons consisted of all 
5,710 frames from each of the 3 videos used. All of the source 
code is publicly available through the following link: https://
github.com/betinatkreiman/DeepLabCut_Manuscript.
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