
12 JANUARY 2024  |  VOL 7  |  1Journal of Emerging Investigators  •  www.emerginginvestigators.org

Article

(3). Current treatment is insufficient, the typical breast cancer 
treatment timeline from diagnosis to completion spans 
months to a year due to multi-modality approaches, delays, 
and slow drug development (4). Reducing the months-to-year 
timeframe for breast cancer treatment through approaches 
like improved screening, care coordination, and Artificial 
Intelligence (AI) can lead to better outcomes by expediting 
and optimizing breast cancer treatment by elucidating 
genetic factors, accelerating drug development, optimizing 
care plans, improving screening and diagnosis, predicting 
risks, and streamlining care coordination (5–7). Leveraging 
AI, genomics, improved screening, and care coordination 
provides opportunities to expedite timelines and improve 
outcomes. AI methods can uncover subgroups within breast 
cancer defined by prognostic factors, potential biomarkers, 
and differential treatment responses, enabling more precise, 
personalized therapies matched to the heterogeneity (the 
magnitude of the variation of individual treatment effects) 
across patients. 

Classification of breast cancer subtypes is of the utmost 
importance to identify what type of specific treatment the 
patient will need to go through (8). There are six different 
breast cancer subtypes used in cancer research: Luminal 
A, hormone receptor-positive or HR+ (meaning that they 
have receptors for hormones of estrogen), human epidermal 
growth factor receptor 2 (HER2+), Luminal B, triple-negative 
or HR-/HER2-, and a sixth subtype, known as normal-like 
breast cancer, which closely resembles luminal A (9, 10). 

In previous studies of breast cancer subtypes, important 
genes related to breast cancer were identified, including the 
BRCA1 and BRCA2 genes, which are associated with an 
increased risk of developing breast and ovarian cancer. Other 
genes that have been identified as being important in breast 
cancer include TP53, PIK3CA, and GATA3 (11). One drawback 
of studies that involve identifying specific genes is that they 
have primarily focused on identifying genes associated 
with breast cancer in populations of European descent, 
which may not be generalizable to other populations (12). 
Additionally, these studies have largely been conducted using 
observational studies, which can be subject to bias and may 
not accurately represent the true population incidence of the 
disease (13, 14). Additionally, studies can also be conducted 
using multiplex families, or large extended pedigrees, which 
can provide more powerful statistical power to detect genetic 
associations. Our research helps to solve these problems: 
with the use of gradient-boosted tree algorithms, we can 
study a wide array of genomes and detect low-frequency 
genetic variants (15, 16). 

Neural networks within explainable AI (XAI) have increased 
drastically over the years, especially within the medical field 
(17). In this research, we classified breast cancer subtypes 
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SUMMARY
Breast cancer is the most common cancer in women, 
with approximately 300,000 diagnosed with breast 
cancer in 2023. It ranks second in cancer-related 
deaths for women, after lung cancer with nearly 
50,000 deaths. Scientists have identified important 
genetic mutations in genes like BRCA1 and BRCA2 
that lead to the development of breast cancer, but 
previous studies were limited as they focused on 
specific populations. To overcome limitations, 
diverse populations and powerful statistical methods 
like genome-wide association studies and whole-
genome sequencing are needed. Explainable artificial 
intelligence (XAI) can be used in oncology and breast 
cancer research to overcome these limitations of 
specificity as it can analyze datasets of diagnosed 
patients by providing interpretable explanations 
for identified patterns and predictions. This project 
aims to achieve technological and medicinal goals by 
using advanced algorithms to identify breast cancer 
subtypes for faster diagnoses. Multiple methods 
were utilized to develop an efficient algorithm. We 
hypothesized that an XAI approach would be best 
as it can assign scores to genes, specifically with a 
90% success rate. To test that, we ran multiple trials 
utilizing XAI methods through the identification 
of class-specific and patient-specific key genes. 
We found that the study demonstrated a pipeline 
that combines multiple XAI techniques to identify 
potential biomarker genes for breast cancer with a 
95% success rate. 

INTRODUCTION
Breast cancer is a type of cancer that affects the cells of 

the breast. It can occur in both men and women, although it 
is much more common in women with it being the second 
most common among them (1). There are several possible 
causes of breast cancer, including genetics, certain medical 
conditions, and certain lifestyle factors. Several factors can 
increase a woman's risk of breast cancer, including genetics, 
reproductive history, lifestyle choices, and breast density. 
Mutations in breast cancer genes greatly increase risk, as do 
conditions like starting menstruation early, pregnancy later in 
life or never, and going through menopause later. Lifestyle-
wise, drinking alcohol, obesity after menopause, inactivity, 
hormone therapy use, and not breastfeeding can raise risk. 
However, in many cases, the exact cause of breast cancer is 
not known (2). Early detection and treatment can improve the 
chances of survival and recovery for breast cancer patients 
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using XAI with data taken from patient-long non-coding RNAs 
(lncRNAs) (18). Analyzing lncRNA expression with artificial 
intelligence presents an opportunity to identify novel subtype- 
and potential patient-specific biomarkers in breast cancer. 
LncRNAs have more cancer-specific expression patterns 
and provide more information than mRNAs, which can reveal 
novel subtype- and patient-specific molecular signatures that 
mRNA studies have been unable to capture. Focusing on 
this understudied non-coding transcriptome leverages recent 
technological advances and has the potential to provide 
functional insights into breast cancer heterogeneity.

Traditionally, researchers have used statistical tools like 
differential gene expression (DGE) analysis to compare 
patient cohorts with healthy cohorts and identify potential 
breast cancer biomarkers (19–24). However, these cohort-
based approaches have limitations in capturing patient-

specific heterogeneity (25, 26). Genome-wide association 
studies (GWAS) have also aimed to identify potential breast 
cancer biomarkers but encountered challenges finding 
cohort-based potential biomarkers that apply across diverse 
populations (27, 28). To address these limitations, some have 
applied artificial intelligence for pan-cancer classification, but 
these approaches still fail to capture patient-specific genetic 
changes that lead to different outcomes (29–31). Moving 
forward, it is essential to identify potential patient-specific 
biomarkers that can guide precision medicine and targeted 
therapy tailored to each patient's unique genetics (32). 
Previous computational studies have failed to identify such 
personalized potential biomarkers. In this study, we propose 
a pipeline for identifying breast cancer subtypes using 
long non-coding RNA (lncRNA) and gradient tree-boosting 
algorithms (33, 34). 

Figure 1: Workflow of the study to identify patient-specific and class-specific genes. N = 1. Steps for identification in the analysis 
pipeline. RNA sequencing data of tumor and normal samples were obtained from The Cancer Genome Atlas (TCGA) (differential expression 
analysis), patient-specific and class-specific genes were identified (biomarker discovery), gene set enrichment analysis was performed 
(pathway analysis), and prognostic value of a gene signature was evaluated (prognostic value). This analysis pipeline enabled the discovery 
of personalized genes.
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We sought to evaluate the XAI models to accurately classify 
breast cancer subtypes based on unspecified molecular data, 
likely long non-coding RNA (lncRNA) expression profiles 
(Figure 1). We did this by including a range of variables, such 
as age, tumor size, hormone receptor status, and the gene 
expression dataset. Several different types of XAI algorithms 
can be used, including supervised learning, unsupervised 
learning, and semi-supervised learning. In the case of breast 
cancer subtyping, supervised learning algorithms are often 
used.

Our motivation is to identify the various breast cancer 
subtypes in patients using artificial intelligence to avoid 
unnecessary testing. To the best of our knowledge, no 
previous study has identified patient-specific breast cancer 
genes using SHAP. We hypothesized that by leveraging 
these XAI techniques, we would be able to predict breast 
cancer subtypes with 90% success, thereby demonstrating 
the potential of applying XAI approaches to unlock clinically 
relevant and personalized insights from complex biomolecular 

data in oncology.
The data analysis was implemented in Python using XAI 

libraries such as Scikit-Learn, Keras, XGBoost, and SHAP 
on the Google Colab platform. Specific techniques included 
decision tree models with XGBoost, deep convolutional neural 
networks using Keras/TensorFlow, and SHAP for model 
interpretation. The dataset contained both gene expression 
data and clinical data for each patient. The initial clinical data 
contained 1,894 patients with many having null or unreported 
data. To handle this, a cohort analysis was conducted, which 
allowed for the patients to be narrowed down to 800. This 
approach allowed the patient IDs to be cross-referenced with 
the gene expression data.

RESULTS
To identify personalized potential biomarkers for breast 

cancer, we leveraged XAI techniques on gene expression 
data from breast cancer patients. Our goal was to develop 
models that could predict prognosis and guide treatment 

Table 1: List of Ensembl gene IDs and corresponding gene names. Ensemble gene identifiers and associated lncRNA names for the 20 
lncRNAs included in the breast cancer molecular subtype classification modeling.
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decisions for individual patients based on their unique gene 
expression profiles. We utilized RNA-sequencing data from 
normal and cancerous breast tissue samples, split into 
training and test sets. Model performance was evaluated on 
held-out test data. With this XAI approach applied to gene 
expression profiles, we aimed to develop precise, potential 
patient-specific biomarkers that capture heterogeneous 
genetic factors influencing breast cancer outcomes. Detailed 
methods are presented after the results.

Our results separate the patient ID and associate it with a 
specific breast cancer subtype, such as luminal A, luminal B, 
HER2+, triple-negative, and basal-like. These subtypes are 
linked to outputs such as long intergenic non-protein coding 
RNA (LINC), dorsal root ganglia-specific lincRNA (DRAIC), 
and alias linc-RGB (AL), which can be cross-referenced with 
patient data.

We obtained the data used in this study from FIU, which 
consisted of a list of human genes and their corresponding 
lncRNA transcripts. Each entry in the dataset includes 
a unique gene identifier (ENSG ID) and the name of the 
associated lncRNA transcript (Table 1).

Additionally, to evaluate the performance of our XAI 
algorithm for predicting breast cancer subtypes, we utilized 
a subset of the data where the true cancer subtype based on 
standard clinical tests was known, allowing us to compare the 
subtype predicted by our model to the ground truth subtype. 

To classify breast cancer subtypes, we utilized XGBoost, a 
powerful gradient-boosting algorithm suitable for classification 
tasks. We used RNA sequencing profiles of 100 long non-
coding RNAs (lncRNAs) and 20 messenger RNAs (mRNAs) 
from The Cancer Genome Atlas (TCGA) breast cancer cohort 
to help train an XGBoost model on gene expression data from 
breast cancer patients with known subtypes. To interpret the 

model and identify the most important genes driving subtype 
predictions, we calculated Shapley values for each feature 
(35-36). SHAP scores were assigned to every gene of every 
sample leveraging the modification of the game theoretic 
approach. Therefore, each of the genes of every sample 
consists of a SHAP score which is then ranked based on the 
score. To explain the local interpretability, we considered the 
top 100 genes of each patient. We tried to find out the common 
genes among the samples of the same classes and found 
that tree explainer output has very few common genes across 
the samples, whereas gradient explainer has almost zero 
overlapping genes across the samples. The score received 
from SHAP assists researchers and medical professionals 
in prioritizing certain features for further investigation or 
as potential targets for personalized treatment strategies. 
Additionally, the output included visualizations, such as 
Shapley value plots, to provide a clear representation of the 
impact of each feature on the classification process.

In summary, the XGBoost model coupled with Shapley 
value explainability techniques allowed successful breast 
cancer subtyping using gene expression data. The model 
performance and feature importance scores highlight the 
potential of this approach to identify personalized potential 
biomarkers and targets for tailored cancer treatments.

Using XGBoost and Shapley values, we achieved a 95% 
success rate in identifying breast cancer subtypes. The 95% 
success rate indicates that the XGBoost algorithm accurately 
predicts the breast cancer subtypes in 95% of cases 
(Figure 2). 

The Shapley value analysis identified the top genes 
contributing to subtype predictions, including TOP2A, 
CCNB2, and BIRC5 for the healthy subtype; SFTPC, NKX2-
1, and SCGB1A1 for the lung adenocarcinoma (LUAC) 

Figure 2: Effectiveness of XAI Methods (SHAP and XGBoost). N = 1. Evaluation of model explainability techniques. SHAP and XGBoost 
were implemented as XAI methods (implementation), model explanations were generated and visualized (explanation generation), explanation 
faithfulness was evaluated numerically (faithfulness evaluation), and user surveys were conducted to assess human interpretability (human 
evaluation). SHAP and XGBoost provided faithful and interpretable explanations of the machine learning model.
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subtype; and NKX2-1, TITF1, and LRP1B for the lung 
squamous cell carcinoma (LUSC) subtype (Figure 3A). The 
Shapley value summary plots visualized how expression 
changes in these key genes shift the model output between 
subtypes. For example, high expression of NKX2-1, a known 

lung lineage transcription factor, pushed predictions toward 
the LUAD and LUSC subtypes. Analyzing patient-specific 
gene rankings revealed heterogeneity between individuals, 
even within a subtype, highlighting the need for personalized 
potential biomarkers (Figure 3B). The identification of known 

Figure 3: XAI identifies subtype-specific genes related to breast cancer. a) Summary of datasets and workflow used in this study. b) 
Heatmap shows TNBC samples from TGCA stratified by subtype correlation strength and annotated for k-means group, PAM50 subtype, 
age, positive lymph nodes, and tumor microenvironment (TIME) classification. Gene expression heatmaps show immune cell abundance 
(ESTIMATE), scRNA deconvolution of normal mammary cells and immune cell lineages, relative RNA expression for immune markers, and 
antigen presentation and immune checkpoint genes. Mutation and copy number alterations are displayed for individual tumors and stratified 
by pathway. Differences in mutation/CNA in one subtype (colored) compared to all others.
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important potential biomarkers like NKX2-1 and surfactant 
proteins validates that the model relies on biologically relevant 
genes for classification. The output of the code also revealed 
common subtype-specific lncRNA biomarkers, including 
high expression of DRAIC and X inactive specific transcript 
(XIST) in Luminal A samples and elevated alias linc-RGB 
(AL) and hypoxia-inducible factor 1 alpha antisense RNA 2 
(HIF1A-AS2) levels in Triple triple Negative negative samples 
(Figure 4).

In summary, the model performance, Shapley values, and 
gene rankings provide critical insights into the core genes 
and mechanisms differentiating breast cancer subtypes for 
improved diagnosis and treatment.

To evaluate how the SHAP-derived potential biomarkers 
compared to traditional differential expression analysis, we 
compared the top 100 SHAP genes to the top 100 differentially 
expressed genes identified by DESeq2 (Figure 5). Despite 
both methods extracting predictive features, there was an 
overlap of only 30 genes between the SHAP and DEG gene 

sets. For instance, lncRNAs HIF1A-AS2 and AL were ranked 
highly important by SHAP but not detected as differentially 
expressed using DESeq2. Overall, these results demonstrate 
how XAI techniques like SHAP can derive personalized gene 
signatures complementary to cohort-based DEG analysis to 
advance breast cancer precision medicine.

DISCUSSION
When starting our research our main goal was to respond 

to one of the greatest challenges in breast cancer research 
which is to identify potential patient-specific biomarkers that 
can aid in personalized medicine. Using papers provided 
by our mentors, we were able to dissect the background 
information of XGBoost, 1D-CNN, and SHAP. Our data 
was taken from the age ranges of 20–65, mainly consisting 
of patients who were females of various races. Using this 
informed knowledge as well as the data set in which an 
analysis was conducted, we were able to use Google Colab 
to write three separate Python-filled codes with one data set. 
This allowed for the separation of the patient's ID to classify 
their breast cancer subtype. 

Our results contribute to the understanding of the potential 
relationship between gene expression and breast cancer 
subtypes. We tested the breast cancer molecular subtype 
classifier on 100 samples from the test set of TCGA data and 
found that the XGBoost model achieved an overall accuracy 
of 95% in predicting the correct subtype labels for these 
samples. The 95% accuracy achieved by the XAI model 
supports the original hypothesis that XGBoost and SHAP 
can enable accurate breast cancer subtype prediction from 
lncRNA data. Identification of novel potential biomarkers 
solely by SHAP further validates the ability of XAI to 
derive meaningful insights from complex data. Overall, the 
interpretable model and unique gene signatures confirm the 
hypothesis that XAI can unlock personalized information from 
omics profiles to advance precision oncology.

By employing AI techniques like XGBoost and Shapley 
values, the study highlights the importance of specific genes 
and their associated lncRNA transcripts in classifying breast 
cancer subtypes. Our results showed that XGBoost, CNNs, 
and SHAP were able to provide a toolkit to build, evaluate, 
and explain predictive models for breast cancer using gene 
expression profiles. This enabled both accurate predictions 
and biological discovery. From this, we can see that XAI can 
be used to determine breast cancer subtypes from patient 
tables in several steps. The results can then be used to guide 
clinical decision-making and inform treatment strategies for 
breast cancer patients.

Figure 4: . Representation of the various types of breast cancers through medical processes. Representative H&E images showing 
TIME classification of TCGA into fully inflamed (FI), stromal-restricted (SR), margin-restricted (MR), or immune desert (ID). These images 
have no scale bar because they were obtained from the TCGA Digital Slide Archive. 

Figure 5: Identification of the frequency of various breast 
cancer subtypes. Barplot shows TIME quantification of images 
by TNBC subtype. Quantification of TIME measurement in images 
was performed and categorized by TNBC molecular subtype 
(implementation). Bars represent average TIME scores for each 
TNBC subtype with standard deviation error bars (explanation 
generation). Differences in TIME scores between subtypes were 
evaluated for statistical significance (faithfulness evaluation). Tumor 
immune microenvironment TIME score correlates with TNBC 
molecular subtype (human evaluation).
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The results open avenues for further scientific inquiry. 
Breast cancer subtypes are currently identified in the clinic 
using immunohistochemistry to measure receptor status 
and gene expression profiles, though no standard molecular 
test exists. Our non-invasive XAI approach complements 
traditional subjective methods by offering an objective way 
to leverage gene expression data for accurate molecular 
classification. Once clinically validated, this methodology 
could provide orthogonal subtype predictions to resolve 
ambiguous cases and boost confidence in subtype calls 
derived from current practices. Future experiments could 
focus on expanding the dataset to include a larger number 
of gene entries and incorporating more diverse data 
sources. Additionally, exploring the association between 
these subtypes and clinical outcomes could enhance the 
understanding of prognosis and treatment response. 

While currently only applied to breast cancer subtypes, 
the RNA sequencing-based pipeline provides a generalizable 
framework that could be readily adapted through supervised 
or semi-supervised learning to identify signatures for other 
cancer types, cancers of unknown primary origin, or samples 
with undefined subtypes. However, creativity is needed to 
account for limited data in rare cancers, with aggregating 
data across institutions, unsupervised clustering, data 
augmentation, and integrating biological knowledge key 
to overcoming these challenges. If thoughtfully extended, 
the XAI modeling approach shows promise for extracting 
insightful molecular patterns even from heterogeneous and 
sparse oncology data.

In summary, the experimental results using XGBoost 
and Shapley values demonstrate the potential of artificial 
intelligence in identifying breast cancer subtypes. The findings 
of this study demonstrate the potential of XAI to improve 
the accuracy and personalization of medical diagnosis and 
treatment and highlight the importance of incorporating 
interpretability into XAI models to enhance their usefulness 
in clinical settings.

MATERIALS AND METHODS
Data Preprocessing

The dataset used in this study consisted of gene expression 
and clinical data for 800 breast cancer patients obtained from 
FIU. The patients were ethnically diverse, with ages ranging 
from 30 to 85 years old, and included both early and late-
stage cancer samples across different molecular subtypes. 
The gene expression data was derived from RNA sequencing, 
providing expression levels for over 20,000 genes per tumor 
sample. The clinical data contained variables such as age, 
cancer stage, tumor grade, and survival outcomes. 

To prepare the data for XAI, patients with incomplete 
clinical data were removed, leaving 800 samples with 
complete gene expression and clinical information. The data 
was randomly split into training (70%), validation (15%), and 
test (15%) sets while stratifying by cancer subtype to ensure 
equal representation across splits.

XAI Algorithm Structures
We developed XAI models using XGBoost, convolutional 

neural networks (CNNs), and SHAP in Google Colab with 
Python 3.8. The models were trained on the training set and 
hyperparameters were tuned on the validation data. Final 
model evaluation was performed on the independent test set. 

These methods allowed for an overall cohesive 
understanding of the gene expression data set, in which 
SHAP was mainly used with the output given by the XGBoost 
code (Appendix). We used a combination of XAI techniques 
to analyze the breast cancer gene expression data. 

The data underwent ingestion and structuring, resulting 
in the creation of a Pandas DataFrame, denoted as 'df.'cTo 
fortify the breast cancer subtype identification model's 
resilience, the code embraced Stratified K-Fold cross-
validation, a meticulous approach that thoughtfully partitioned 
the dataset into both training and testing subsets. This 
meticulous partitioning guaranteed that each fold retained 
a representative distribution of the target variable. The 
resulting divided datasets were systematically stored in 
separate CSV files, thereby facilitating further analysis 
and experimentation. The code's functionality was further 
enhanced through the integration of key functions. Primarily, 
the 'drop_false_pred(df)' function was introduced, which 
played an instrumental role in filtering the dataset to eliminate 
samples that had been inaccurately predicted by the model. 
Subsequently, the 'filter_shap(test_data, shap_arr, y_map_
new)' function was executed, quantifying SHAP ( values for 
every individual sample within the test dataset. These SHAP 
values were systematically organized into a structured data 
frame, poised for in-depth scrutiny and analysis.

A pivotal element of this research was in the 'get_rank_
df(df)' function, which assumed responsibility for ranking 
genes within each subtype class based on their respective 
SHAP values. This function, contingent on the dataset having 
undergone preprocessing via 'drop_false_pred', calculated 
the median SHAP values for each class and delivered a data 
frame that encapsulated the gene rankings. 

Subsequently, the code embarked on the process of 
loading the XGBoost model and the associated test data 
for each of the five folds. The SHAP library was engaged 
to compute SHAP values for each individual sample, 
subsequently storing these values in designated files. 
Concurrently, the code generated informative summary plots 
that facilitated a global and class-specific interpretation of the 
model's predictions.

In a separate iteration loop, the code delved into the 
extraction of patient-specific genes for each fold. Genes were 
systematically ordered in terms of their importance, yielding 
a dedicated DataFrame that housed patient-specific gene 
information. This invaluable information was then meticulously 
archived in dedicated files.

The concluding segment of the code involved the 
amalgamation of the patient-specific gene DataFrames from 
all five folds into a singular, comprehensive data frame. This 
consolidated dataset was meticulously fused with true labels, 
thereby providing an exhaustive insight into the patient-
specific genes identified within the context of breast cancer 
subtypes. It is imperative to note that certain placeholders 
within the code should be diligently replaced with actual file 
paths and model details to ensure its seamless execution 
within the unique research context. The final XGBoost model 
was trained on the larger training subset and then applied 
to the held-out test set to evaluate generalizability. For 
feature importance analysis, SHAP values were computed 
to identify the most predictive genes (Figure 6). SHAP was 
applied to the same cohort RNA-seq dataset to derive feature 
importance scores. The trained XGBoost model was passed 
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to the TreeExplainer in SHAP to generate SHAP values for 
each gene-sample pair. From this, global and local feature 
importance rankings were obtained, along with waterfall plots 
to visually assess the impact of top genes.

APPENDIX
The link below is a GitHub repository that shows the 

creation of the code: https://github.com/ASuresh0524/
FIUPaper 

It is necessary to include the cohort file used in the 
research so others can replicate the research with their own 
XAI techniques. This contains the file that was used for the 
code: all-subtypes-lncRNAs-12k Final Copy.xlsx 
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