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 Multiple myeloma (MM) is a cancer of plasma cells (6). 
The American Cancer Society estimates that 35,730 new 
cases of MM will occur in the United states in 2023 and 
12,590 patients will die of MM in 2023 (7). MM is staged by the 
Revised International Staging System, which divides patients 
into three groups. For the lowest risk group, the estimated 
chance of overall survival five years after diagnosis was 82%, 
and the estimated chance of progression-free survival, which 
means MM did not progress after initial therapy, was 55% (8). 
For the highest risk group, the estimated chance of overall 
survival five years after diagnosis was 40%, and the estimated 
chance of progression-free survival was 24% (8). The median 
survival of patients with MM is highly variable, but, compared 
with people who have not been diagnosed with MM, survival 
has been shown to be decreased for MM patients of all ages 
(6, 9). MM is rarely curable with traditional therapies (10, 11). 
 MM can be treated by a variety of approaches including 
cytotoxic chemotherapy followed by autologous hematopoietic 
stem cell transplant, corticosteroids, immunomodulatory 
drugs, proteasome inhibitors, monoclonal antibodies, 
and CAR T cells (6, 12, 13). Although many therapies are 
available for MM, patients almost always relapse, even after 
treatment with newer monoclonal antibody or CAR T cell 
treatments (14). There are also significant toxicities with most 
currently available therapies such as neurologic toxicity with 
proteosome inhibitors and cytokine-release syndrome with 
CAR T cells (15, 16). Most established multiple myeloma 
therapies are nonspecific. New therapies are needed to 
increase the median survival time of patients with MM, 
and our work aims to aid in the development of new more 
specifically targeted therapies for multiple myeloma. 
 RNA sequencing (RNAseq) is a technique used to 
measure the expression of genes in cells (17, 18). Differential 
gene expression analysis can be used to compare the 
expression of genes across different samples of cells (17, 19). 
We used data from cell lines and primary cells in this work. 
 We hypothesized that differences in gene expression 
between MM cells and normal healthy cells could be used to 
identify new targets for MM therapies. Because expression 
of a therapeutic target in normal cell could lead to damage of 
normal cells by the therapy, a preferable target would have 
high levels of gene expression in MM cells but limited to no 
expression in normal cells. We tested this hypothesis by 
performing differential gene expression analysis with publicly 
available data on cell lines. Next, we evaluated RNAseq 
data from primary MM cells and assessed gene expression 
in normal human tissues. We identified 19 genes that were 
expressed in MM cells but had limited expression in normal 
human tissues. The proteins encoded by these 19 genes may 
be potential targets for MM therapies.

Identification of potential therapeutic targets for 
multiple myeloma by gene expression analysis

SUMMARY
New treatments are needed for multiple myeloma 
(MM), an almost always incurable cancer of plasma 
cells. Cancer therapies might have fewer side effects 
if they are aimed at specific protein targets expressed 
by cancer cells. We hypothesized that differences in 
gene expression between multiple myeloma cells and 
normal cells could be used to identify new targets 
for MM therapies. RNA sequencing (RNAseq) is a 
technique for quantifying gene expression in cells. 
We analyzed RNAseq data from the Cancer Cell Line 
Encyclopedia to identify genes with high expression 
in MM cell lines versus cell lines derived from cancers 
other than MM. Next, the 200 genes with the highest 
expression in MM cell lines versus other cell lines 
were evaluated for RNA expression in primary MM 
samples from patients. Of these genes, 72 were 
expressed in at least 23 of 25 primary samples from 
patients. We evaluated the 72 genes expressed at 
high levels in MM cell lines and expressed in primary 
MM cells for expression in normal human tissues. We 
evaluated gene expression in normal human tissues 
by using publicly available RNAseq data. Genes with 
high expression in normal tissues were eliminated 
as potential targets to decrease the chance of side 
effects caused by therapies targeting proteins 
expressed by normal tissues. We identified 19 genes 
with high expression in MM and low expression in 
normal tissues. The proteins encoded by these genes 
are promising therapeutic targets for MM and include 
Prepronociceptin (PNOC) and Interferon Regulatory 
Factor 4 (IRF4).

INTRODUCTION
 Nonspecific therapies for cancer, such as chemotherapy, 
do not specifically target cancer cells and, consequently, 
damage both cancer and normal cells (1–3). While nonspecific 
therapies can lead to cures for certain cancers, they can 
also be detrimental to the health of patients (1–3). Targeted 
therapies for cancer can be less toxic than chemotherapy 
because targeted therapies are specifically designed to 
target proteins expressed at higher levels in cancer cells 
versus normal cells (4). Targeted therapies are usually in the 
form of small-molecule drugs or monoclonal antibodies (4). 
Some immunotherapies such as chimeric antigen receptor-
expressing (CAR) T-cells are also targeted to specific proteins 
on cancer cells (5).
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RESULTS
Differential gene expression analysis
 We tested our hypothesis by following a four-step process 
that involved analyzing publicly available RNAseq data from 
cell lines, primary MM cells, and normal human tissues 
(Figure 1). We performed differential gene expression 
analysis on RNAseq data from cell lines to identify genes 
with higher expression in MM cell lines versus other types 
of cancer cell lines. We downloaded cell line RNAseq gene 
level count data from the Cancer Cell Line Encyclopedia 
(CCLE) from the DepMap website (20, 21). The four MM 
cell lines used in this analysis were selected for similarity of 
gene expression with primary MM cells. This selection was 
based on a comparison of gene expression of MM cell lines 
to primary MM cells performed by Sarin et al. (22). MM cell 
lines selected were MM.1S, EJM, KMS34, and Molp2 (21, 
22). Gene expression of the MM cell lines was compared with 
gene expression of four cell lines derived from cancers other 
than MM (non-myeloma cell lines). These four non-myeloma 
cell lines were from a variety of important organs. HepG2 
was from liver cancer; A549 was from lung cancer; MOLT3 
was from T-cell leukemia; U251MG was from brain cancer 

(21). By using the programming language R, differential 
gene expression analysis was performed with the DESeq2 
program to compare gene expression in MM cell lines and 
non-myeloma cell lines. 
 DESEq2 output from the 20 genes most highly expressed 
in MM cell lines compared with non-myeloma cell lines is 
shown (Table 1). These results provide an example of the 
large differences in gene expression between multiple 
myeloma cell lines and non-myeloma cell lines. DESeq2-
normalized gene counts of non-MM cell lines (HepG2, A549, 
MOLT3, U251MG) and MM cell lines (MM1S, EJM, KMS34, 
Molp2) are shown (Table 1). The genes with the greatest 
difference in expression between MM cell lines and non-
myeloma cell lines were the 250 genes with the highest 
expression in MM cell lines versus non-myeloma cell lines 
and the 250 genes with the lowest expression in MM cell 
lines versus non-myeloma cell lines. For these genes with 
the greatest difference in expression between MM cell lines 
and non-myeloma cell lines, we summarized the adjusted 
p-values and the log2 fold-change for the comparison of the 
normalized gene counts for MM cell lines and non-myeloma 
cell lines (Figure 2).
 We determined the 250 genes with the highest expression 
in MM cell lines versus non-myeloma cell lines and the 250 
genes with the highest expression in non-myeloma cell lines 
relative to MM cell lines (Figure 3A, B). We performed these 
analyses to identify genes with the largest fold-change in 
expression between MM cell lines and non-myeloma cell 
lines. Genes with the highest expression in MM cell lines 
relative to non-myeloma cell lines are of interest because this 
expression pattern might allow specific targeting of MM cells 
while sparing non-myeloma cells from damage.

Assessment of gene expression in primary MM cells
 In the second step of the project, genes found in the 
DESeq2 analysis to be expressed at much higher levels in 
MM cell lines compared with non-myeloma cell lines were 
further evaluated for expression in primary human MM cells 

Figure 1. Flowchart of overall project. The flowchart shows the 
four main steps of the project. The aim of the project was to identify 
genes with high expression in MM and low or absent expression in 
normal tissues because such genes encode proteins that might be 
suitable targets for MM therapies. Genes were assessed by RNAseq 
performed on cell lines, primary MM cells, and normal human tissues. 

Figure 2. DESeq2 output depicting statistical parameters of 
the most differentially expressed genes between MM cell lines 
and non-myeloma cell lines. Log2 fold-change is on the x-axis, 
and -log10 p-value adjusted for multiple comparisons (PAdj) is on 
the y-axis. The group of dots to the left of the red line represents 
the 250 genes with the lowest expression in MM cell lines versus 
non-myeloma cell lines. The group of dots to the right of the red line 
represents the 250 genes with the highest expression in MM cell 
lines versus non-myeloma cell lines.
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from patients. This was done to confirm that genes highly 
expressed in MM cell lines are also expressed in primary 
MM cells from patients. We used primary MM cell RNAseq 
data derived from bone marrow samples of 25 patients (23). 
These data originated from a study by Alameda et al. in 
which different plasma cell malignancies, including multiple 
myeloma, were investigated (23). These publicly available data 
were from the National Center for Biotechnology Information 
Gene Expression Omnibus (GEO) website (24). By necessity, 
this evaluation of primary MM was limited to genes that were 
listed in both the cell line and primary MM data sets. Among 
genes included in both data sets, we assessed the 200 genes 
most highly expressed in MM cell lines versus non-myeloma 
cell lines for expression in primary MM patient samples. Since 
our goal was to determine if the genes were expressed in 
primary MM cells, we defined a gene as expressed in primary 
MM if it had a read count of 10 or greater in at least 23 of 25 
samples assessed. Expression in at least 23 of 25 primary 
MM samples indicates that a gene is consistently expressed 
in MM cells of patients (Figure 4). Of the top 200 genes most 
highly expressed in MM cell lines relative to non-myeloma cell 
lines, 72 genes were also expressed in primary MM samples 
(Table 2). These genes have a preferable expression pattern 
for the target of a specific therapy for MM. 

Assessment of gene expression in normal human tissues
 In the third step of the project, we assessed expression 
of the 72 genes found to be highly expressed by MM in 
normal human tissues. For this analysis, we used publicly 
available human normal tissue RNAseq data from the 
Genotype-Tissue Expression Project (GTEx) website (25). 
We assessed gene expression in 53 normal tissues. For each 

normal tissue assessed, the GTEx data that we used were 
the median transcripts per million (TPM) of samples from 
multiple subjects. We considered a gene to have restricted 
normal tissue expression if the gene met two criteria. First, 
the gene had to be expressed at a median level of 30 TPM 
or greater in no more than two normal tissues. Second, the 
gene had to have a median of less than 5 TPM in kidney, 
brain, and heart tissues. The expression limit was lower for 
kidney, brain, and heart since these are particularly critical 
organs. We set these criteria arbitrarily but with an interest in 

selecting genes with a limited tissue distribution and with very 
low expression in the most critical organs.
 Nineteen of the genes determined to be highly expressed 
in MM cells also had a restricted expression pattern in normal 
human tissues (Table 3). Expression of the tumor necrosis 
factor receptor superfamily member 13B (TNFRSF13B) gene 
in normal human tissues is shown as an example of a gene 
with a restricted normal tissue expression pattern (Figure 

Figure 3. Differences in gene expression by MM cell lines 
relative to non-myeloma cell lines. Heats maps represent DESeq2-
normalized gene counts of four MM cell lines and four non-myeloma 
cell lines. From top to bottom, genes are ranked by log2 fold-change. 
The gene counts were normalized with GraphPad Prism for display 
on the heat maps. (A) Heat map shows the 250 genes most highly 
expressed in MM cell lines compared with non-myeloma cell lines. 
(B) Heat map shows the 250 genes most highly expressed in non-
myeloma cell lines compared with MM cell lines. Color scales to the 
right of the heat maps indicate the level of gene expression. Yellow 
represents highly expressed genes while blue represents genes with 
low expression. Non-MM cell lines were HepG2, A549, MOLT3, and 
U251MG. MM cell lines were MM1S, EJM, KMS34, and Molp2. 

Table 1. Example of raw DESeq2 output. As an example of DESeq2 output, the results of the 20 genes with the highest expression in MM 
cell lines versus non-myeloma cell lines are shown. Gene names are in the first column. Fold-change and log2 fold-change in gene counts 
between MM cell lines and non-myeloma cell lines are shown. The p-values adjusted for multiple comparisons (PAdj, Benjamini-Hochberg 
approach) are shown. The DESeq2-normalized gene counts for non-myeloma cell lines (HepG2, A549, MOLT3, U251MG) and MM cell lines 
(MM.1S, EJM, KMS34, Molp2) are shown. *The units in all columns under “Non-myeloma cell lines and “Multiple myeloma cell lines” are 
normalized gene counts.
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5A). TNFRSF13B was not expressed at a median level of 30 
TPM or more in any normal tissue. The median TPM of the 
Copine 5 (CPNE5) gene in each normal tissue is shown as an 
example of a gene with widespread expression in important 
tissues (Figure 5B). CPNE5 has expression above five TPM in 
the heart and brain, among other tissues; thus, we eliminated 
the protein encoded by this gene as a potential therapeutic 
target due to the gene expression in tissue samples from 
critical organs. 

Selection of genes with a preferential gene expression 
pattern for targeted therapies
 In the final step, we narrowed down the genes identified 
in previous steps to a pool of genes that fit all three criteria. 
First, the gene was expressed at high levels in MM cell lines 
while also being expressed at low levels in non-myeloma cell 
lines. Second, the gene was expressed in primary MM cells. 
Finally, the gene had limited expression in normal human 
tissues. We narrowed the data to a group of 19 genes fitting 
all criteria (Table 3). These 19 genes that are expressed in 
MM cells but expressed at low levels in normal human tissues 
might be appropriate targets for new specific MM therapies. 

DISCUSSION
 MM is a cancer that is almost always incurable with 
current therapies, so new therapies are needed for MM. 
Our hypothesis that differential gene expression analysis 
could be used to identify potential targets for MM therapies 
was shown to be supported by our analyses and results. We 
found, using differential gene expression analysis, 19 genes 
with a favorable expression pattern that could result in novel 
targeted therapies for MM. 
 Our approach identified two genes encoding proteins that 
are already targets of MM therapies approved by the United 
States Food and Drug Administration (FDA), which suggests 
that our approach was valid. One gene that we identified as a 
promising therapeutic target for MM was SLAMF7. SLAMF7 
encodes a protein that is a surface antigen and good marker 
of normal plasma cells and MM cells (26). The SLAMF7 

Figure 3. Differences in gene expression by MM cell lines 
relative to non-myeloma cell lines. Heats maps represent DESeq2-
normalized gene counts of four MM cell lines and four non-myeloma 
cell lines. From top to bottom, genes are ranked by log2 fold-change. 
The gene counts were normalized with GraphPad Prism for display 
on the heat maps. (A) Heat map shows the 250 genes most highly 
expressed in MM cell lines compared with non-myeloma cell lines. 
(B) Heat map shows the 250 genes most highly expressed in non-
myeloma cell lines compared with MM cell lines. Color scales to the 
right of the heat maps indicate the level of gene expression. Yellow 
represents highly expressed genes while blue represents genes with 
low expression. Non-MM cell lines were HepG2, A549, MOLT3, and 
U251MG. MM cell lines were MM1S, EJM, KMS34, and Molp2. 

Figure 4. Assessment of gene expression in primary MM cells. 
The 200 genes most highly expressed in MM cell lines versus non-
myeloma cell lines as ranked by log2 fold-change were assessed 
for expression in primary multiple myeloma samples. Primary MM 
cell RNAseq data were obtained from bone marrow MM samples of 
patients. A primary MM sample was counted as expressing a gene if 
the sample had a raw gene count of 10 or higher. Genes meeting this 
threshold for expression in at least 23/25 primary MM samples were 
counted as being expressed in primary MM cells.
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Table 2. Genes with high expression in MM cell lines and primary MM cells. The names and abbreviations of 72 genes highly expressed 
in MM cell lines compared with non-myeloma cell lines and expressed in at least 23/25 primary MM samples are displayed.
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protein is the target of an FDA-approved monoclonal antibody 
therapy (27). The second gene identified by our approach 
that encodes a protein already targeted by FDA-approved 
therapies is TNFRSF17, which encodes the B-cell maturation 
antigen protein (13, 28).
 Integrin Beta 7 (ITGB7) encodes a cell-surface protein 
that might be a suitable target for monoclonal antibody or 
chimeric antigen receptor (CAR) T-cell therapies for MM (29). 
The Fc receptor like 5 (FCRL5) and TNFRSF13B genes also 
encode cell-surface proteins, which might be targeted by 
monoclonal antibodies or CAR T cells (30, 31). Expression of 
TNFRSF13B in the spleen is due to expression of this gene 
by normal B cells and plasma cells (Figure 5A) (32). Notably, 
these genes are under evaluation by other investigators as 
therapeutic targets for MM (29–31). 
 The wingless-type mouse mammary tumor virus 
integration site family member 10A (WNT10A) protein is a 
member of the WNT gene family (33). This gene is expressed 
in different forms of lymphoma and may be implicated in 
oncogenesis (33). WNT10A signaling might be inhibited by 
blocking post-translational modification or receptor binding 
(33).
 Interferon regulatory factor 4 (IRF4) is a transcription 
factor that interacts with many different proteins (34). One 
important protein that IRF4 interacts with is transcription 
factor PU.1 (34). Interestingly, the Spi1 proto-oncogene 
(SPI1), which encodes PU.1, was one of the 72 genes that we 
found to be expressed at high levels in MM cells. This offers 
support for IRF4 and PU.1 being present in the same cells 
(Table 2). It is conceivable that a therapy could be designed 
to block the interaction between IRF4 and PU.1. Another 
gene with a favorable expression pattern was POU2AF1. The 
POU2AF1 protein is also known as BOB1 (35). The POU2AF1 
gene encodes a transcriptional cofactor that is important for 
expression of many genes critical for B-lineage cells (35).
 We used cell line RNAseq data for differential gene 
expression analysis. It would have been preferable to use 
primary MM cells and primary normal human tissue RNAseq 
data for this step since the goal was to find targets for therapies 
that could eliminate primary MM cells while not harming 

normal human cells. However, we did not have access to 
primary human MM and normal human tissue RNAseq 
data that was generated by the same methods; therefore, 
performing differential gene expression analysis would not 
have been valid. We set arbitrary criteria of restricted normal 
tissue gene expression. These criteria were 1) no more than 
two tissues could have a median gene expression of greater 
than 30 TPM, and 2) gene expression of heart, kidney, or brain 
could be no more than a median of 5 TPM. These arbitrary 
criteria could be relaxed to increase the number of genes 
determined to be suitable therapeutic targets. Alternatively, 
the criteria could be tightened by lowering the allowed median 
TPM levels to decrease the number of genes determined to 
be suitable therapeutic targets.
 Future steps for this work could include assessing more 
than 200 genes for expression in primary MM samples 
and normal human tissues. Assessing a larger number of 
genes would increase the chance of finding genes with the 
appropriate expression pattern. Another future project could 
include studying protein expression of promising genes 
in primary MM cells and normal human tissues. Finally, 
future steps for this work could involve projects aimed at 
developing methods of targeting the proteins encoded by the 
19 genes with promising expression patterns. Such methods 
could be monoclonal antibodies for cell-surface proteins or 
small molecule drugs to target some intracellular proteins. 
Development of any therapy targeting one of the 19 genes that 
we identified would be a large project involving generation of 
a monoclonal antibody or small molecule drug followed by 
testing in vitro and possibly in vivo in animals such as mice.
 Our approach to finding therapeutic targets could be 
applied to other types of cancer. This could be accomplished 
by finding cell lines in the CCLE derived from any type of cancer 
and then comparing gene expression of these cell lines to 
control cell lines derived from other cell types. Subsequently, 
candidate genes could be assessed for expression in the 
appropriate type of primary cancer cells and in normal human 
tissues.
 Many cancer therapies cause toxicity by damaging 
normal tissues. We showed that gene expression analysis 

Table 3. Genes with high expression in MM and low expression in normal tissues. All of the listed genes have high expression in MM 
and low expression in normal tissues. This is the preferred expression pattern for potential therapeutic targets.
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can be used to identify genes encoding proteins that might 
be suitable targets for new cancer therapies that selectively 
target cancer cells but not normal cells. Our findings could 
potentially lead to new targeted therapies for MM.

MATERIALS AND METHODS

Differential gene expression analysis with DESeq2
 By using RNASeq data from the CCLE, gene expression 
was compared in multiple myeloma cell lines versus cell 
lines derived from cancers other than MM (non-myeloma cell 
lines) (21). Cell line RNAseq gene-level count data from the 
CCLE was downloaded from the DepMap website (20,21). 
The specific data used was the 2022 Quarter 2 release of 
the CCLE RNAseq data. These data were downloaded in 
a file called CCLE_RNAseq_reads.csv (20). RNAseq was 
carried out by CCLE investigators (21). Gene-level read 
counts were calculated; details are available in Ghandi et al. 
(21). Gene-level RNAseq fragment counts were analyzed. A 
comma-separated values (csv) file that contained RNASeq 
gene counts of all genes included in the CCLE data was 
prepared. Data from eight cell lines: four MM cell lines and 
four non-myeloma cell lines was included. The four MM cell 
lines utilized were MM.1S, EJM, KMS34, and Molp2 (21). The 
four non-myeloma cell lines were HepG2 (liver cancer), A549 

(lung cancer), MOLT-3 (T-cell leukemia), and U251MG (brain 
cancer) (21). To analyze the RNASeq data, R version 4.3.0 
was run on RStudio. Instructions were followed from RNA-
SEQ by Example, a biostar handbook (Updated December 
11, 2021) (36). The DESeq2 package from Bioconductor was 
run to normalize the RNAseq gene count data and perform 
a statistical analysis. The statistical analysis compared the 
normalized gene counts of the four MM cell lines and the 
four non-myeloma cell lines. Statistical analyses performed 
by DESeq2 included a test of statistical significance with 
correction for multiple comparisons by the Benjamini-
Hochberg approach and the log2 fold-change between 
the normalized gene counts of the MM cell lines and non-
myeloma cell lines. 

Evaluation of RNA transcript counts in primary MM 
samples
 We obtained RNAseq data from primary MM samples 
from the GEO website (accession #GSE175384) (24). The 
primary MM data that we evaluated came from primary MM 
samples from 25 different patients. Plasma cells were purified 
from the 25 MM patients, and  RNAseq was performed on 
mRNA from the plasma cells by Alameda and coworkers. 
Details are available at Alameda et al. (23). The data that we 
assessed was gene-level RNAseq data. 

Figure 5. Normal tissue expression of genes with restricted and extensive patterns of expression. (A) TNFRSF13B gene expression in 
transcripts per million (TPM) is shown for major human tissues. TNFRSF13B had a restricted expression pattern. (B) CPNE5 gene expression 
in TPM is shown for major human tissues. CPNE5 had a widespread expression pattern. These genes were selected to show one gene with 
a restricted expression pattern (A) and a second gene with a widespread expression pattern (B). In Esophagus-GE Junction, GE stands for 
gastroesophageal junction.
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 A list of genes that were present in both the MM cell line 
data set and the primary MM data set was selected. From the 
DESeq2 results comparing MM cell lines and non-myeloma 
cell lines, the 200 genes with the highest expression in MM 
cell lines versus non-myeloma cell lines as defined by log2 
fold-change were selected. The name of each of these 200 
genes was searched for in the primary MM data set. If a 
gene had a read count higher than 10 in a sample, that gene 
was considered expressed in that sample. If the gene was 
expressed in 23 out of 25 or more of the samples that we 
assessed, the gene was designated as expressed in primary 
MM. 

Evaluation of normal tissue gene expression
 Expression of genes in normal human tissues was 
evaluated using RNAseq data from the GTEx website (25). 
Sequencing was performed by investigators of GTEx, and 
RNAseq reads were aligned to the human genome (37). 
Gene-level quantification was performed, and results were 
presented as TPM. From the GTEx site, Expression then 
Search Gene/Transcript Expression were selected. This 
led to a text box where the gene abbreviations could be 
entered to obtain the RNAseq gene counts for the selected 
gene. RNAseq gene counts were expressed as TPM for 
each of 53 different tissues. For each tissue, median TPM 
were determined from the results of multiple subjects. TPM 
is a standard method for reporting RNAseq count data that 
normalizes for mapped read (transcript) frequency and gene 
length (38). The specific GTEx data was GTEx Analysis 
Release V8 (dbGaP Accession phs000424.v8p2). Gene 
counts were provided for all major human tissues.

Graphical representation
 The volcano plot, heat maps, the pie chart, and bar graphs 
were made with Graph Pad Prism version 8.4.3. Values on 
the heat map were normalized by Prism with final values 
presented as percentages. By the normalization process, the 
smallest transcript count for each gene was defined as 0% 
and the largest transcript count for each gene was defined as 
100%.
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