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space called the periplasm. This space is filled with 
ions, proteins, and other solutes. It also contains the 
peptidoglycan layer, a mesh of sugars and amino 
acids assembled into interlocking strands in a complex 
network. The periplasm is an important site for protein 
localization (1) and can constitute up to 40% of the 
volume of a Gram-negative bacterium (2). The periplasm 
adopts the pH of the extracellular environment, usually 
around 7.5 to 7.6 (3), and is a crucial component of an 
E. coli cell. Constructing a model of the periplasm is 
therefore an important step toward building a model of 
an entire bacterial cell.

The work described here involves the construction 
of an atomically accurate preliminary model of the 
periplasm, the first of its kind, following a similar approach 
used by McGuffee and Elcock to build a structurally 
detailed model of the bacterial cytoplasm (4). The aim 
of this work was to construct a model of the periplasmic 
space that can eventually be used in conjunction with 
that of the cytoplasm and with future models of the inner 
and outer membrane to create a complete, accurate, 
and comprehensive model of an E. coli cell.

Molecular dynamics (MD) and Brownian dynamics 
(BD) simulations are powerful tools that enable the 
modeling and visualization of molecular interactions 
at the atomic level. They take into consideration 
the important forces that impact atoms, including 
bond stretching, angle bending, dihedral torsions, 
electrostatic interactions, and van der Waals forces. 
They create force vectors to predict trajectories for the 
atoms using classical Newtonian mechanics that are 
updated on very small timescales. This allows one to 
visualize the conformational behavior of biomolecules 
in aqueous solutions, and thus, provides a means to 
‘animate’ otherwise static structural models. Recent 
advancements in quantitative proteomics (elucidating 
and quantifying specific proteins in cells) and structural 
proteomics (solving structural coordinates of proteins, 
making available the 3-dimensional structures for use) 
provide the raw data necessary to set up and perform 
MD and BD simulations of large-scale biomolecular 
systems.

We therefore attempted to create a stable preliminary 
model of the E. coli periplasm and subject it to MD 
simulation. To this end, 13 of the most abundant 
periplasmic proteins, as determined by a quantitative 
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Introduction
There has long been interest in modeling complex 

biological systems in order to advance biology, 
medicine, and science. The construction of a complete 
computational model of a biological cell, for example, 
could revolutionize the manner in which research is 
conducted, allowing for testing of hypotheses via in 
silico computer-based approaches in conjunction with 
experiments performed in vitro and in vivo, or as a 
stand-alone approach.

Escherichia coli (E. coli) is a common model 
organism used in molecular biology research, so a model 
of this single-celled Gram-negative bacterium would 
be immensely useful. An E. coli cell has a cytoplasm 
containing the chromosomal DNA, ribosomes, and 
many other proteins bounded by a complex cell wall. 
The latter is composed of inner and outer phospholipid 
bilayer membranes that together bound an aqueous 
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proteomics study (5), as well as corresponding structural 
data, were used to create a preliminary model of the 
periplasm. Throughout an initial MD simulation of 
23-nanosecond duration, several intriguing interactions 
between the proteins in the model and the peptidoglycan 
layer were observed.

Results
Figures 1A–D show histograms depicting several 

properties of the periplasmic proteins researched in this 
work. Figure 1A shows that the molecular weights of the 
proteins vary from less than 10 kDa to beyond 60 kDa, 
with an average of ~30 kDa. The overwhelming majority 
of these proteins are negatively charged with one 
exception: membrane-associated serine endoprotease, 
which has an estimated net charge of > +40e (Figure 
1B). Consistent with this, the isoelectric points for most 
of the periplamic proteins are slightly acidic (i.e. below 
pH 7), which may affect their interactions with each other 
and with the peptidoglycan layer (Figure 1C). Finally, the 
distribution of estimated copy numbers for periplasmic 
proteins indicates that a substantial number of proteins 
are present in very low copy numbers (i.e., < 30 per 
cell), while a few are present in very high copy numbers 
(Figure 1D). Therefore, a few highly abundant protein 

types dominate the protein composition of the periplasm.
The structures of all 42 proteins for which structures 

were modeled, together with their estimated copy 
numbers per cell, are shown in Figure 2. It is interesting 
to note that some of these models, such as those for LD-
transpeptidase and transglycosylase, contain regions 
with little or no secondary structure. These regions were 
predicted to be intrinsically disordered and have no stable 
configuration, based on the protein’s FASTA sequences 
entered into IUPred, a tool that predicts intrinsically 
disordered protein regions (26). Thus, it is impossible for 
the homology modeling program to create the protein’s 
structure in these regions, since a stable structure does 
not exist. This explains the largely unstructured regions 
of these few proteins. Other proteins shown in Figure 
2 are large, structured oligomers whose components 
dictate their function. Several of the transporter proteins, 
such as those that transport methyl galactoside and 
the charged amino acids histidine, lysine, arginine, and 
ornithine, have structures composed of transmembrane 
alpha helix domains. Therefore, these proteins should 
not be considered as freely diffusing in the periplasm.

The movements of the 13 proteins selected for 
inclusion in the periplasm model and their internal 
flexibilities during the simulation were largely dictated by 

Figure 1: Physicochemical features of periplasmic proteins. (A) Molecular weight distribution, (B) net 
charge distribution, (C) pI distribution, and (D) the predicted numbers of proteins in a typical cell.
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their structures. Large oligomers that had a well-defined 
structure, such as L-asparaginase II, did not change very 
much throughout the duration of the simulation. On the 
contrary, others, such as D-ribose binding protein and 
ecotin, had an intrinsically flexible structure that may 
have contributed to their behavior during the simulation.

Figures 3A and 3B compare the beginning 
configuration of the simulation with that produced at the 
end of the simulation. Most proteins moved very little, 
due to the relatively short timescale of the simulation, 
but some did behave interestingly. TolB (dark sage color) 
interacted with the peptidoglycan layer and became 
stuck in the meshwork of amino acids and sugars. 
Rotamase (brown) also latched on to the peptidoglycan 
layer and was stuck for a large part of the simulation. 
Biosynthetic arginine decarboxylase (blue), which has a 
net charge of -66.6, was repelled from the peptidoglycan 
model, which had a charge of -276, and was observed to 

be at a distance of approximately 84 angstroms, around 
1/3 of the width of the periplasmic space (27). In addition, 
a varied spectrum of pore sizes was observed in the 
peptidoglycan, some large enough for proteins to pass 
through. TolB was close to passing through a hole, but 
got caught on the peptidoglycan.

Root mean square deviation (RMSD) values from 
the original structure were calculated for five randomly 
selected proteins (biosynthetic arginine decarboxylase, 
ecotin, nucleoside diphosphate kinase, D-ribose binding 
protein, and glucan biosynthesis protein) and were 
plotted against simulation time, as shown in Figure 4. 
Examination of the graphs indicates structural stability 
for three of the five proteins as the slope of the best fit 
line goes to zero as the time increases, indicating that the 
structure does not change significantly. For the two other 
proteins, ecotin and D-ribose binding protein, however, 
greater fluctuations were observed. These two proteins’ 

Figure 2: Gallery of 42 periplasmic proteins whose structures were modeled. Blue indicates amino acids 
whose structure was taken from the homology template; red indicates amino acids that were model-built. 13 proteins  
selected for periplasm modeling are outlined in red.



4April 6, 2016Journal of Emerging Investigators

     Journal of
Emerging Investigators1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

conformations varied significantly, as both graphs have 
large periods of oscillation between structures similar to 
the starting point and those that are more different. This 
greater flexibility can be explained when one looks in 
more detail at the structures of the proteins. 

The ecotin dimer, shown in Figure 5, takes on 
a distinctive Z-shaped structure that is likely to be 
inherently flexible; the two “arms” of the Z have relatively 
large freedom to flex along the structural support of the 
middle bar. The D-ribose binding protein shown in Figure 
6, on the other hand, has potential flexibility between its 
two globular-shaped chains as the interface of these two 
chains is very small. While these features account for 
the observed fluctuating RMSD plots, it is important to 
note that the fluctuations are not so great as to indicate 
fundamentally unstable structures. Obviously, longer 
simulations need to be conducted to obtain a better 
picture of protein behavior on a longer timescale, but 

these preliminary simulations show that this area holds 
promise and interesting prospects for the future.

Discussion
The construction of atomically accurate models of 

intracellular environments provides us with the building 
blocks needed for the creation of a whole-cell model. 
Here, the first dynamic model of the periplasmic space at 
the atomic scale has been created, and the interactions 
of the proteins in this space with the peptidoglycan 
mesh have been visualized. It is interesting to note 
that this model was made possible largely by recent 
advancements in the burgeoning fields of biomolecular 
and biophysical visualization, as well as those in 
quantitative proteomics and systems biology. As large-
scale experimental studies continue to be conducted and 
more data is generated, it will be possible to constantly 
update and improve models, as well as create new ones 

Figure 3: Simulated movement of protein structure. Pictures of the system at the beginning (A) and end (B) of the simulation. 
A key is provided that matches proteins with their respective colors.

Figure 4: Plots of RMSD of 5 simulated periplasmic proteins. Ecotin (Orange), D-ribose binding protein (Red), biosynthetic 
arginine decarboxylase (Blue), glucan biosynthesis protein (Green), nucleoside diphosphate kinase (Purple). The five were randomly 
selected.

3A 3B
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based on new incoming data, to create useful models of 
biological systems.

We think that the work described here shows that 
using current molecular dynamics simulations, protein 
modeling, and structural visualization software, in 
conjunction with high-throughput quantitative proteomics 
studies, can lead to the creation of a meaningful model of 
the E. coli periplasmic space. Moving forward, however, it 
is important to be aware of the potential limitations of the 
approach adopted here. For example, while the protein 
structures produced here through the use of homology 
modelling procedures are likely to be fairly reliable due 
to the high sequence conservation between the template 
and the target sequences, it is important to note that 
for other proteins it is possible that no sufficiently good 
template upon which to construct a homology model 
exists. In such cases, homology modelling is likely to 
yield inaccurate models and so-called ab initio prediction 
algorithms are likely required (28). 

It is also important to acknowledge that, while MD 
simulations can provide invaluable insights into the 
behavior of biomolecules, they are also limited by a 
number of factors. For instance, if the force field used 
does not accurately model all the interactions between 
atoms, the simulation will, in turn, be inaccurate. In 
addition, MD simulations are also limited by the available 
computational power, which directly affects the size and 
timescale of the simulations. The simulation reported 
here should, therefore, be considered preliminary, as 
the system’s behavior has only been observed over 
a relatively short time scale, and even then has only 
been simulated once. Additional longer simulations – 
ideally on a microsecond timescale – will be needed 

to obtain a better picture of the nature of interactions 
between proteins and the peptidoglycan layer. It is also 
important to note that the present work used a relatively 
small 6-stranded peptidoglycan sheet, which limited 
the number of proteins that could be included in the 
simulations. However, in the future, the peptidoglycan 
model could be expanded to a larger size and more 
proteins can be added to obtain a more complete picture.

Despite the limitations of the current model, it 
is expected that further advancements in the fields 
of structural biology, quantitative proteomics, and 
computational modeling will enable increasingly 
complete and accurate models of intracellular conditions. 
Such models could prove to be immensely useful in all 
areas of the biological sciences and would advance 
and revolutionize research, allowing for the testing of 
biological hypotheses and experiments done in silico, 
as well as allowing the verification of in vitro results. A 
unicellular model would eventually lead the way to one of 
a more complex biological system, such as a multicellular 
organism with specialized cells. This would greatly 
facilitate work done with subjects, such as humans and 
live organisms, by offering a cheaper, organism-free 
method to preliminarily test hypotheses. This would be 
a powerful quantitative biological visualization tool when 
used in conjunction with in vitro and in vivo experiments 
that could drastically improve the quality of research in 
the future. Future directions and the next steps for the 
near future are to perform simulations with the entire 
periplasmic protein fraction created here and to add the 
inner and outer membranes, transmembrane proteins, 
and eventually, the cytoplasm to build a complete, 
accurate, and comprehensive model of the E. coli cell.

Figure 5: The Z-shaped structure of ecotin. Figure 6: The dimeric conformation of D-ribose binding 
protein.
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Methods
In this work, the selected proteins came from a 

comprehensive and unbiased quantitative proteomics 
study in E. coli performed by Masuda et al. (5). The 
supporting information of their publication provides 
a list of 1,270 proteins that were identified using their 
novel protease and bile salt protocol to rapidly digest 
the membrane and extract the cell’s proteins, which 
eliminates a bias for soluble proteins. These proteins were 
listed with features important to the simulations, such as 
copy number per cell and intracellular location. Of the 
38 proteins that were originally listed by the authors as 
being periplasmic, 9 were also present in another cellular 
compartment. There were 601 proteins identified by the 
authors whose location was listed as a “0”, which the 
authors used to indicate that the location was unknown. 
Thus, it was necessary that all 1,270 of the proteins 
were, for the sake of consistency, checked for location. 
Using this data sheet, all of the 1,270 accession numbers 
were individually examined in the Biocyc database (6), 
which links to the UniProt protein sequence database 
(7). The proteins that were periplasmic were identified 
and compared to those in the original list. All 38 proteins 
identified by Masuda et al. were featured in the new list. 
However, there were 15 new proteins that existed in the 
periplasm and another cellular compartment, while 11 
novel proteins were found exclusively in the periplasm. 
As only one copy number is given for each protein in the 
Masuda et al. dataset, it is not clear how many copies of 
each protein are located in each cellular compartment 
for those that are found in multiple compartments. Since 
it is not known, therefore, how many copies to add to the 
periplasm in this simulation, these proteins were omitted 
from the initial model described here.

The names and accession codes of the periplasmic 
proteins were then recorded in an Excel spreadsheet, 
and the amino acid (FASTA) sequences for each protein 
were obtained from the Uniprot database. The ExPASy 
pI/MW tool was used to compute the pI and the molecular 
weight of the proteins using the FASTA sequences as 
input (8, 9, 10), and PROTEIN CALCULATOR v3.4, which 
uses pKa values from Stryer’s Biochemistry was used to 
compute electric charges at pH 7.0 (11). The molecular 
masses were then used to determine the percentages of 
the entire mass of the cell that each protein comprised. 
Finally, the number of molecules present per protein 
was calculated by dividing the copy number reported 
by Masuda et al. by the number of polypeptide chains 
in each protein. After computing the percentage of 
molecules comprised by each protein, the INT function 
was used to calculate how many copies of each protein 
should be used in the simulation given a particular total 
number of molecules.

Homology Modeling 
To create the structures of the proteins, homology 

modeling was used. A BLAST search was carried 
out on the SEQATOMS webserver using the FASTA 
sequences as input (RCSB; 12). If the reported e-values 
were less than 1 × 10-4, then homology could be inferred 
(13), and the four-character alphanumerical codes of 
the corresponding structure were used to obtain the 
oligomeric states and ligands from the RCSB entry. 
However, if the e-values were not less than the above 
cutoff, no homology could be inferred, indicating that 
no good templates existed upon which to build these 
proteins. Examples for which this was the case include 
YcbX and YngH, which are thought to contain intrinsically 
disordered regions. Although it is possible that threading 
and ab initio modeling algorithms could have been used 
to create putative structures for these proteins, it would 
be very difficult to predict the tertiary and quaternary 
structures with high accuracy; to avoid the possibility 
that poorly modeled structures could lead to unrealistic 
behavior, these proteins were not included. 

When there were sufficiently good templates, the 
PDB files were downloaded and edited manually to 
remove heteroatoms (non-protein atoms) and change 
formatting. Using SwissPDBViewer, the sequence 
alignment obtained from the SEQATOMS search was 
used to align the sequences of the protein of interest with 
that of its homolog for which a structure was available 
(14). This initial, aligned structure was formatted using 
the in-house Perl CLEAN.SWISS program, missing 
loops were created using LOOPY (15), and missing N 
and C termini were created using an in house program. 
After this, SwissPDBViewer was used to fill in any 
missing sidechains, and the resulting PDB structure file 
was verified to have been completed using VMD Beta 
view, which rendered constant regions blue and those 
that were changed red. The final structure was then 
considered ready for use in a subsequent MD simulation. 
This procedure was successful for most modeled 
proteins, but failed for three: YdeN, beta-D-glucoside 
glucohydrolase, and a predicted mechanosensitive 
channel, even though they were found to have existing 
templates in the protein database. It is unclear as to 
why these proteins could not be modeled successfully, 
but it is likely that internal steric clashes in the models 
prevented the CLEAN.SWISS program from completing 
the addition of missing loops. 

Protein Concentrations in the Periplasm 
To determine how many protein molecules in total 

were to be used in the simulation based on a given 
volume, the combined concentration of proteins in the 
periplasm needed to be calculated. The volume of an E. 
coli cell is estimated to be 1.1 μm³ (16), and the periplasm 
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makes up, on average, ~16% of the cell’s total volume 
(17, 18). Therefore, the total periplasmic volume is 0.16 
× 1.1 × 10-18 = 1.76 × 10-19 m3. There are estimated to be 
2.35 × 106 proteins in an entire E. coli cell (17), of which 
4% are thought to be periplasmic (19). Thus there are 
approximately 2.35 × 106 × 0.04 = 94,000 periplasmic 
proteins. This means that the number of moles of protein 
in the periplasm is 94,000 / 6.022 × 1023 = 1.56 × 10-19 mol. 
Therefore, the concentration of proteins in the periplasm 
is 1.56 × 10-19 mol / 1.76 × 10-19 m3 = 0.89 mM. Given 
that the periplasmic volume ranges from 10% to 40% of 
the total cell volume, we expect the combined protein 
concentration to range from 2.22 to 0.55 mM assuming 
that the protein copy numbers remain approximately 
constant. 

Molecular Dynamics Simulations 
All MD simulations were performed using the freely 

available GROMACS software (20). The pdb2gmx 
command was used to create topology files from each 
protein’s structure (pdb) file that were to be used in the 
GROMACS simulation. The AMBER99SBnmr1-ILDN 
force field (21) was used to describe protein atoms, 
and the TIP4P-Ew (22) model was used for water 
molecules. A 6-stranded model of the peptidoglycan 
layer constructed by Chengxuan Guo, a member of the 
group, was also included in the simulation; parameters 
for the sugar atoms of the peptidoglycan were taken from 
the GLYCAM force field (23). To reduce computational 
expense, we limited the size of our initial simulation 
system to the following dimensions: 246 × 243 × 180 
Å, with the peptidoglycan model oriented in the x-y 
plane. The volume of this system is 1.08 × 10-23 m3. For 
such a system size, we expect that the total number of 
periplasmic proteins would range from 3.6 to 14.4. A 
whole number on the higher side, 13, was chosen from 
this range, as choosing a larger number of proteins to be 
placed in the simulation would facilitate the interactions 
between them and the peptidoglycan layer, allowing for 
easier visualization of this behavior. 

The proteins chosen for the simulation were the 13 
most abundant proteins in the periplasmic space, as 
determined by their estimated experimental copy number 
(5). These proteins are listed in Table 1, along with 
their copy numbers per cell and other important details 
including their oligomeric states and PDB and Uniprot 
IDs. Each of these proteins was added to the system 
using an in-house script that places molecules randomly 
while avoiding steric clashes with atoms that have 
already been placed. The system was then solvated in a 
box of water with periodic boundary conditions. Na+ and 
Cl- ions were added accordingly at a concentration of 
150 mM, and 9 additional sodium ions were then added 
to neutralize the charge of the system. The temperature 

was then incrementally raised from 50 Kelvin, to room 
temperature, 298 K, and Newtonian dynamics was 
computed for all atoms in the system using GROMACS 
version 4.5.1 (20). The simulation was performed on 6 
compute-nodes and 288 cores of a PC computer cluster, 
96 of which were used to perform calculations of long-
range electrostatic interactions using the Particle Mesh 
Ewald (PME) method (24). This setup was determined 
to provide the best performance by running a series of 
experimental 5 picoseconds (ps)simulations. The entire 
system was simulated for 23.368 ns, over the course 
of 10 days, with a timestep of 2.5 ps and then stopped 
for viewing and analysis. An xtc file without water 
molecules displaying 1 frame every 10 picoseconds was 
generated, and the resulting movie was then viewed with 
VMD version 1.9.1 (25). As periodic boundary conditions 
took effect, separating proteins that crossed the edge 
of the simulation cell, an in-house program was used to 
create whole versions of the proteins for the purpose of 
facilitating visualization. The simulation was then viewed, 
and the resulting interactions were observed.
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