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Significance of Tumor Growth Modeling in the Behavior 
of Homogeneous Cancer Cell Populations: Are Tumor 
Growth Models Applicable to Both Heterogeneous and 
Homogeneous Populations? 

SUMMARY
The ability to predict and slow the spread of cancer in 
the human body is a task that medical professionals 
have been trying to accomplish for many years. 
Being able to give factual basis to the use of 
certain growth models for application in not just 
heterogeneous, but also homogeneous cancer cell 
populations is imperative to treatment research as 
using mathematical analysis to predict the dynamics 
of tumor growth allows professionals to simulate how 
tumors might behave in the human body. This study 
follows the process of single-cloning and the growth 
of a homogeneous cell population in a superficial 
environment over the course of six weeks with the 
end goal of showing which of five tumor growth 
models commonly used to predict heterogeneous 
cancer cell population growth (Exponential, Logistic, 
Gompertz, Linear, and Bertalanffy) would also best 
exemplify that of homogeneous cell populations. 
We hypothesized  that the Gompertz, Linear, and 
Bertalanffy models would provide the best fit to the 
homogeneous cancer (clonal) cell population growth 
data while models such as the exponential and 
logistic model, which are most commonly associated 
with the growth of heterogeneous cancer cell 
populations in natural environments (i.e. malignant 
tumors), would veer off the growth data. It was shown 
that Gompertz and Linear functions provided the best 
fit for this population, while exponential and Logistic 
functions fell slightly behind. The data collection and 
analysis for this research was performed through the 
University of Michigan Research Labs and Solver by 
Frontline Systems. 

INTRODUCTION
	 Cancer has always been a burden to the health system 
as malignant tumors are notorious for slowly taking over the 
body due to their ability to evade apoptosis and reproduce 
indefinitely [1]. In 2020, the American Cancer Society 
estimates that there will be 191,930 new cases of prostate 
cancer and about 33,330 deaths resulting from the disease 
(2). Scientists have tried to identify the “most accurate” 
mathematical model to fit tumor growth. However, results 
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are either inconclusive or vary greatly depending on the 
cell population as most studies only focus on the early 
stages of tumor growth. Similarly, though many studies have 
determined a model that best fit that set of tumor growth data, 
these findings were not applicable to other data sets as tumor 
growth can vary greatly depending on the tumor environment 
[3]. If a certain model fits better than others and behavioral 
patterns of tumor growth predicted by mathematical analysis 
can be generalized to all cell populations, scientists will have 
a better idea of the timeline of tumors in the human body. 
Treatment can then be developed to inhibit this behavior, 
effectively slowing down the spread of cancer and the growth 
of malignant tumors [3]. 
	 Major key concepts to be addressed in this research 
are the application of mathematical tumor growth models 
in association with homogeneous cancer cell populations, 
proliferation rates of cancer cell lines (specifically in the VcaP 
cell line), and the cell cloning procedure as a whole. The 
proliferation rate refers to the rate of growth of the cancer 
cell population or the malignant tumor itself. Proliferation 
could also refer to the reproduction rate of the cells. In this 
research, the proliferation rates among these cell lines was 
directly measured through cell counting as the increase in 
cell count over the course of the experiment would signify 
the overall proliferation rate of the population. Cell lines are 
specific cell samples from general cancer that are purchased 
for the research lab. For example, both VcaP and PC3 are cell 
lines of prostate cancer that are used for general research in 
urologic cancer labs. Cell cloning is the process of taking a 
cell line sample and diluting it to the point where you have a 
single cell isolated in its well (cell plate). Over time this cell 
will then reproduce infinitely and form a homogeneous cell 
population [4]. In this research, the proliferation rate of one 
prostate cancer homogeneous cell population was measured 
over a time period of six weeks and compared to five different 
tumor growth models (Exponential, Logistic, Gompertz, 
Linear, and Bertalanffy). 
	 The exponential growth model yields a growth rate that 
is proportional to the cell population and is most commonly 
associated with the early stages of tumor proliferation [3]. 
However, this model has proven to be less accurate as tumor 
growth progresses in the body due to angiogenesis and 
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Table 1: Five growth functions are being utilized. For each equation, 
a and b serve as parameters that are relative to the data set. V 
exemplifies the change in tumor size over time. In this case, V will 
be representing the cell population number at the given time [3, 9].

nutrition depletion. When graphing this model, the solution to 
the initial equation is used [5]. The solution is given 
by: 

with t serving as the week the data was collected, r serving 
as a growth parameter, and V0 serving as the initial cell 
population measurement. The model assumes that growth is 
proportional to the surface area and that there is a decrease 
in tumor volume due to cell death. The Logistic Delay growth 
model yields that the growth of a cancerous cell population 
is limited by some capacity relative to the tumor size. The 
logistic model assumes that the cell population increases 
linearly until zeroing out at carrying capacity for the said 
population and embodies a standard sigmoidal curve [3]. The 
Gompertz growth model is a generalization of the logistic 
model and is known to be the best example of breast and 
lung cancer in the human body [3]. The model had the original 
intent of displaying the human mortality curve, however, 
it proves to be applicable to the growth of organisms with 
a sigmoidal curve that is asymmetrical with the point of 
inflection [6]. It also predicts that as the tumor grows in size, 
its growth rate decelerates. The model shows that a tumor’s 
rate of growth is the most significant at the early stages of 
growth when there are no means to detect the tumor clinically 
[7]. The linear growth model assumesthat a cell population 
grows at a constant rate, first exponentially then linearly over 
time. The model was also initially used to predict the growth 
rate of cancer cell populations when this type of research 
was moderately new [3]. The Bertalanffy growth model was 
created to exemplify organism growth and is known to provide 
the best example of tumor growth [3]. Each model has a 
specific tumor growth formula that can be applied to unique 
data sets in order to predict the future growth of a tumor or 
cancer  cell population (Table 1). 
	 The hypothesis of this study is that when a homogeneous 
cell population is monitored from its start in an artificial setting 
it will best resemble a constant rate of growth exemplified by 
the Linear, Gompertz, and Bertalanffy model as opposed to 

a constant growth rate given by the Exponential or Logistic 
growth model. This is because these two models are more 
commonly associated with early stages of heterogeneous 
tumor growth in a natural environment with limited resources. 
While some of the models studied here have proven to be 
good examples of specific cases heterogeneous tumor 
growth (i.e. the Gompertz Model is known for best predicting 
breast and lung cancer) the exponential and logistic models 
are known for being a good basic generalization of early 
heterogeneous tumor growth of varying types [3]. Along 
with that, we hypothesized that the Linear, Gompertz, and 
Bertalanffy growth models would be a better fit for the 
experimental data generated, as based on a previous study 
of superficial heterogeneous tumor growth, they seem to be 
significantly more flexible than the exponential model when 
it comes to fitting data points generated in lab environments 
[3]. These models are not commonly associated with general 
heterogeneous tumor growth [3]. Similarly, the Logistic model, 
though having about the same fit as the Gompertz and Linear 
model in the study mentioned, were still assumed to have 
a lacking fit since this study was focused on homogeneous 
growth and the Logistic model is, as previously mentioned, 
more commonly associated with the basic generalization 
of natural heterogeneous tumor growth [3]. Major issues 
to be addressed through this research include identifying 
what growth model best fits the early stages of growth of a 
homogeneous cell population in a superficial environment, as 
well as determining if those models differ from those more 
commonly associated with heterogeneous tumor growth 
in its early stages and in a natural environment with limited 
resources (i.e. exponential and logistic) [3]. In this study, growth 
data from a prostate cancer single-cell clone population was 
collected over a period of time starting from the formation 
of the cell population and the experimental data points’ fit 
to the growth models being utilized (Exponential, Logistic, 
Gompertz, Linear, and Bertalanffy) to determine which model 
best described homogeneous cancer cell population growth 
in this context. The models utilized in this study were chosen 
based on their widespread use in measuring tumor growth 
in the human body [3, 6]. The two other commonly used 
models in tumor growth — Surface and Mendelsohn — were 
not utilized in this research due to the fact that these models 
commonly use tumor volume as a measurement and not cell 
population count. Since the measurement unit in this study 
is cell population count, it is important to only use models 
that are versatile when it comes to units of measurement [2]. 
The purpose of this research is to provide evidence as to 
which model fits best with the behavior of a homogeneous 
cell population and give reasoning as to why this outcome 
exists. No specific treatment is being imposed other than the 
cell cloning process itself and parameter generation for each 
model. 
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RESULTS
	 This experiment was conducted through first the 
procedure of single-cell cloning and then data optimization 
to generate an equation for each of the tumor growth models 
being studied from the original cell population data. A single 
cell was first taken from a VcaP prostate cancer cell line 
sample and left to incubate over six weeks with growth media 
that was changed in weekly intervals. Over this time, periodic 
cell population counts were taken weekly, and these data 
points were then optimized through Solver (Google Sheets) 
to generate the best fit equation for each tumor growth model 
being studied. In order to decide which model suited the 
homogeneous cell population best, the NMSE (Normalized 
Mean Square Error) and SSR (Sum of Least Squares) were 
taken for each model. The objective was to have a small SSR 
and NMSE, as that indicates the best fit. The AICc (Aikake’s 
Information Criterion) for each model was also taken to help 
identify possible bias within the models, with a high AICc 
indicating potential bias. 
	 We hypothesized that when a homogeneous cell 
population is monitored from its start it will best resemble a 
Linear, Gompertz, or Bertalanffy growth model as opposed 
to an Exponential or Logistic growth model, which are more 
commonly associated with heterogeneous tumor growth 
in its early stages and in a natural environment with limited 
resources [3]. After calculating the NMSE and AICc for each 
model, we concluded that while the Bertalanffy model had an 
NMSE and SSR of zero, indicating a perfect fit, it also had an 

abnormally high AICc pointing to potential bias having to do 
with sample size and eliminating it from the being a possible 
fit to the data. As expected, when considering both the NMSE 
and AICc, the Linear model had the lowest values, indicating 
a generally good fit and minimal bias. The Gompertz model 
followed, with the second lowest NMSE and AICc, and the 
logistic and exponential models followed after that (Table 2). 
The Bertalanffy, Gompertz, and Linear models were almost 
indistinguishable from each other due to their close fit to the 
experimental data (Figure 1B), however, the Exponential and 
Logistic Models showed high variation from the experimental 
data points (Figure 1A & C). It also needs to be mentioned that 
due to confounding variables data was unable to be collected 
for week three of this study, qualifying it as an erroneous data 
point for all figures and further discussion of results. 
	 As stated before, the SSR, NMSE, and AICc for each 
model had a good amount of variation. While the Bertalanffy 
model had a perfect SSR and NMSE, it also had an abnormally 
high AICc, pointing to potential bias most likely having to do 
with a small set of data points. The Gompertz model was the 
best fit for the experimental data overall, as when considering 
the three forms of analysis together, the Gompertz model had 
the lowest overall values proving it to be a good fit with minimal 
bias. The Linear model was the second-best fit in terms of the 
overall analysis; however, it still fell behind the Gompertz in 
the sum of squared residual analysis. This is slightly surprising 
as even with having the second highest SSR, the linear model 
still had the best NMSE and AICc in the sense that both 

Figure 1: (a) A graph of the models in comparison to the experimental 
data. The Bertalanffy, Gompertz, and Linear models very closely 
overlap over the experimental data, while the Exponential and 
Logistic models veer off the experimental data further. (b) A visual 
comparison of the experimental data points for weekly cell count 
and the corresponding points for the Gompertz, Bertalanffy, and 
Linear models. (c) A visual representation of each model graphed 
separately in comparison to the experimental data points. 
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values were the closest to zero when compared to those of 
the other models. The logistic and exponential models proved 
to be the worst fit for the data, both having high AICc and 
NMSE in comparison to the other models. It is also surprising 
that both the exponential and logistic models had the highest 
AICc after the Bertalanffy model as the exponential model 
only had one parameter (Table 2). 
	 Going off that, the parameters generated for each 
model had a slight amount of variation as well (Table 3). 
Each model had two parameters of a and b, apart from the 
exponential model which only required one parameter of r, 
signifying growth rate. Though these parameters play no part 
in interpreting each model’s actual fit to the data they still hold 
interest. While most of the parameters generated (for those 
of a and b) centered around zero, those of the linear model 
were substantially high which could be expected, as this is a 
commonality in similar experiments [3]. 
 
DISCUSSION
	 We hypothesized that when a homogeneous cell 
population is monitored from its start it will best resemble a 
Linear, Gompertz, or Bertalanffy growth model as opposed 
to an Exponential or Logistic growth model, which are more 
commonly associated with heterogeneous tumor growth 
in its early stages and in a natural environment with limited 
resources [2]. These findings support the original hypothesis 
in that the logistic and exponential models proved to be the 
worst fit for a homogeneous cell population, suggesting 
that there was a difference between the growth, model of a 
single-cell population, and the growth of a heterogeneous cell 
population. Many factors contribute to this including the fact 

that the single-clone population was artificially created and 
existed in a controlled environment. A heterogeneous cell 
population existing in the body would have different nutritional 
and environmental conditions that would alter the growth of 
the population overtime. 
	 When interpreting which models exemplified a good 
fit to the data, it was also important to take note of the 
circumstances in which each model works best and how this 
could translate to potential bias. The best example of this 
with this set of data is the Bertalanffy model. Though it is 
always suspicious when a model has a perfect fit, it could 
be assumed that this model may have a “perfect” fit due to 
the small sample size of the study. The Bertalanffy model 
assumes that growth is proportional to surface area, and 
since the number of data points as well as timespan was very 
small in this study, it is safe to assume that the surface area 
of the cell population had minimal to no change over time 
even though the cell number itself rose. This was supported 
as even though the model did have a “perfect” fit to the data 
with an SSR and NMSE value of zero, the AICc of the model 
was significantly high. Since an AICc is meant to correct for 
sample size and parameter bias, it is reasonable to assume 
that the reason the Bertalanffy model had such an accurate fit 
to the data is that there were too few data points. Under those 
circumstances and the assumption of bias, the Bertalanffy 
model was rejected as a potential fit to this set of data as it 
would only be fair to take the equation under consideration 
with a large number of data points that simulate infinite time. 
That leaves both the Gompertz and Linear models as good 
representations of the data provided by the population. This 
is unsurprising as linear models were originally used to 
predict the growth of cell populations in early research, and 
the Gompertz model was also used for this purpose [3]. Both 
models are also quite versatile in terms of units, as they can 
estimate growth from both tumor volume measurements 
and quantitative cell population data. Both models also have 
the ability to work well with smaller sets of data such as 
that utilized in this study. This is because the Linear model 
generates a slope directly from the given data, so no matter 
the sample size the model will generally fit the points fairly 
well due to its flexibility [3]. Similarly, the Gompertz model 
follows the pattern of a function that is asymmetrical with the 
point of inflection. This makes the Gompertz function quite 
flexible, as it allows the function to fit any amount of data quite 
closely since the function does not have to be symmetrical 
with the data’s point of inflection like in the Logistic model [3]. 
Along with the Logistic model, the Exponential model is quite 
inflexible when it comes to smaller sets of data as the function 
only has one parameter, allowing for very little change to 
the general function when inputting a small number of data 
points [3]. Both of these models had the highest AICc after 
Bertalanffy, suggesting that they had some form of bias. This 
most likely also had to do with limited sample size, since both 
functions are typically used with larger sets of data due to 
their inflexibility when it comes to small sets of data [3, 6]. We 

Table 2: The SSR, NMSE, and AIC c for each model. The ideal for 
each form of analysis is having a number relatively close to zero. In 
terms of the AICc positive or negative values do not hold any value 
over one another.

Model SSR NMSE AICc
Exponential 1021839.2 0.085281 80.27213
Logistic 80237.756 0.0066965 75.00594
Gompertz 105.20054 0.0000087799 35.18465
Linear 38904.237 0.0000018203 21.81120
Bertalanaffy 0 0 -170.6488

Table 3: The parameters for each model. The parameter of r comes 
from the exponential solution, not the initial function listed (Table 1).

Model a b r
Exponential n/a n/a 1.193
Logistic -2.591 x10-3 2.185 n/a
Gompertz 1.144 2.103 x10-2 n/a
Linear 71522.726 70588.288 n/a
Bertalanaffy -5.13 x10-11 -0.999 n/a



JUNE 2020  |  VOL 3  |  5Journal of Emerging Investigators  •  www.emerginginvestigators.org

also suspected that the reason the logistic and exponential 
models proved to not be a great fit is that the cell population 
being studied was not in an environment with a limited number 
of resources or space. 
	 In terms of parameters, all numbers computed seem to 
fit the general data trends set by previous studies of this kind. 
For instance, in previous studies, the parameters of all of the 
model’s used except Linear were centered around zero, while 
those of the Linear model all were significantly higher. The 
same trend can be seen in this study as the parameters of a 
and b in the linear model were significantly higher than those 
in the Gompertz, Bertalanffy, and Logistic models. Along with 
that, in considering the Gompertz model, most other studies 
dealing with the Gompertz model utilize a three-parameter 
equation of a, b, and, c (Figure 2). This equation is given by:

	 The equation utilized in this study had two parameters 
only (Table 1) [9]. While this should not have had an impact on 
the fit of the model itself as both are functions of Gompertz, 
it would have increased the model’s AICc as it deals directly 
with a higher number of parameters in correlation to bias [3]. 
The three-parameter equation was not utilized in this study 
due to variable constraints in Solver. The parameters of a, 
b, and r in each data set serve as “free number” parameters 
that are generated by a data optimization function to create 
an equation for each model that best fits the experimental 
data. However, these parameters should hypothetically fall 
into the following definitions for each growth model. For the 
exponential model, r should serve as the growth constant. For 
the Logistic model, a should serve as a growth constant and 
b should serve as a carrying capacity [3]. For this formulation 
of the Gompertz model, a and b truly serve as free parameter 
values [9]. For this formulation of the Linear model, a/b should 
give the initial exponential growth rate, and a should give the 
later constant growth rate. For the Bertalanffy model, a should 
serve as a growth constant, and b should serve as a constant 
of cell death [3]. For some of these models, specifically the 
Logistic and Bertalanffy models, these parameter definitions 
do not make sense. This again could be due to sample size 
bias as they both had a very high AICc when compared to 
models with an equal number of parameters such as the 
Linear and Gompertz models. 
	 Boundaries that possibly inhibited the course of this 
study include time, material, and sample size. Travel to the 
lab was only possible once a week, which limited the number 
of observations and experiments that could be carried out 
as well as limited the amount of data that could be collected 
within a specific timeframe. This could provide for some 
unwanted bias in some models (i.e. Bertalanffy, Exponential, 
and Logistic) that rely heavily on large data counts [3]. Another 
boundary that exists in terms of this research is material. This 
hypothesis on more than one cell line or cell single clone 
population due to the limited amount of cancer lines available 
in cell culture at this given time. 

	 In terms of uncontrollable factors in relation to this study, 
time and material constraints likely had an impact on the overall 
execution. Week three of data collection was considered an 
erroneous data point as independent circumstances did not 
allow data collection to happen; however, ideally that would 
not be the case. Similarly, time constraints only allowed for 
this set of data to have a small number of points, leading to 
a great deal of potential bias among equations that require 
a larger set of data such as the Bertalanffy, Logistic, and 
Exponential models. It is also generally known that larger sets 
of experimental data yield stronger results. Time constraints 
also limited the set of data that could be produced. Ideally, 
at least three single clones would be produced, and a large 
number of data points would be collected. However, there 
was only enough time to perform the study on one clonal 
population after deciding which cell line to use. The material 
available also played a factor in this. Along with that, ideally, 
data would also be taken on a daily basis rather than a weekly 
one, as that would provide more insight into the population’s 
growth rate and would generate a larger set of data. This 
was not possible as transportation constraints only allowed 
data to be taken on a weekly basis. If these uncontrollable 
factors did not exist and the situation was ideal, then the 
models would probably show more accuracy, and models 
such as the Bertalanffy model would not have been rejected 
due to sample size bias. However, since the Gompertz and 
Linear models had a low AICc for this data set and had limited 
known bias under the circumstances of this experiment, we 
can still assume that these models still provide the best fit for 
homogeneous cell populations, while exponential and logistic 
models might be a better fit for heterogeneous cell populations 
under natural circumstances. For procedural improvements, 
the single-clone procedure itself was performed under 
proper circumstances and conditions, indicating that there 
was no bias with the experimental data set. In terms of data 
application and parameter optimization, proper methods 
and functions were utilized for each model. Apart from the 
minimal amount of data points, each function was applied 
with the proper method as well. For future research, using a 
much larger sample size both in terms of number of single-
clone cell populations and time data points collected would 
be recommended, as well as the utilization of the VcaP cell 
line as it provides for a stable homogeneous cell population. 
By being aware of the differences in the growth between 
heterogeneous and homogeneous cell populations, as well 
as the growth functions that model each, cancer treatment 
research can be taken to the next level as scientists would 
be able to accurately predict the growth of tumors prior 
to their spread and not be limited by time or material. The 
findings of this research provide useful knowledge about 
the development of homogeneous cancer cell populations; 
however, they still leave room for additional research since 
not all cancer cell lines and growth functions were utilized. 
 



JUNE 2020  |  VOL 3  |  6Journal of Emerging Investigators  •  www.emerginginvestigators.org

MATERIALS AND METHODS
	 A VcaP prostate cancer cell line was used to create 
a homogeneous single clone population, and population 
counts were recorded weekly over a period of six weeks. 
Afterward, the raw data was applied to five different tumor 
growth functions with the goal of providing the best fit to the 
population growth. 

Single Clone and Cell Counting Procedure 
	 Through the process of the single clone procedure cells 
were cultured in RPMI-1640 supplemented with 10% FBS, 
1% Penicillin/Streptomycin and 1% L-glutamine. Phosphate-
buffered saline, and trypsin were utilized to clean holding 
flasks and detach cells for counting. The cell clone procedure 
was performed as follows. Growth media was aspirated out 
of the original flask holding the Vcap cells, and 10 mL of PBS 
was added to the flask. The PBS was aspirated, and one mL 
of trypsin was added to the flask in order to detach the cell 
from the flask wall. After three minutes, 5 mL of PBS was 
pipetted into the flask in an up and down matter to neutralize 
the trypsin creating a 6 mL cell solution within the flask. Three 
mL was taken from this cell solution and put into a test tube. 
The test tube was then inserted into a centrifuge and spun at 
194 RCF for a total of 5 minutes in order to pellet the cells. 
After the cell was spun down fully, the solution above the cell 
pellet was aspirated out of the tube to just leave the pellet. 
10 mL of PBS was pipetted into the tube in order to dilute 
the cell pellet. A 20 µL sample of test tube solution was then 
inserted into and counted using the hemocytometer. After a 
cell density and dilution factor was calculated for the sample, 
the test tube cell solution was diluted to the ratio of 100 cell/
mL and pipetted into two 96-well plates. The plates were then 
studied under the microscope, and wells observed to only 
have one cell present were identified and marked. The plates 
were put in the incubator to rest. After one week, the plates 
were studied again and a single well (out of the ones initially 
marked) was chosen to continue the rest of the experiment. 
Only one well was chosen because in this experiment only 
one of the wells marked held a healthy cell population at the 
first weekly check. The cells of this well were transferred to a 
bigger flask every two weeks, so the cell population was not 
spatially limited in terms of cell density. Cell population counts 
were taken weekly. 
	 A hemocytometer was used to take all cell population 
counts as well as provide the dilution factor for the initial single-
clone process. Ink-counting was also utilized throughout this 
study for population count validation. The procedure for using 
the hemocytometer was as follows. First, 10 µl was taken 
from the cell suspension (post-trypsin) and pipetted into a 
small test tube. Ten µL of the solution was pipetted into each 
side of the hemocytometer plate. The plate was placed under 
the microscope and the number of cells in each of the four 
corner grids were counted and the hemocytometer formula 
for measured cell density was imposed to determine the initial 
dilution factor [8]. The formulas for measured cell density and 

initial dilution factor are given by:

	 After performing this formula for each side of the 
hemocytometer, the results from both sides were averaged 
[8]. For the initial cloning procedure, the cell was diluted 
to one-hundred cell per mL (or 1 cell per 100 uL). For the 
periodic cell counts after the cloning was completed, just the 
measured cell density (cell population count) formula was 
used and the result was recorded after being scaled to the 
proper volume. In the sample used, the initial dilution factor 
was 480 mL, meaning that in order to achieve 100 cell per mL, 
480 mL needed to be added to the sample. To do this, only 
1 mL of the initial 10 mL sample was taken, and 48 mL was 
added to that sample in order to reach the desired dilution 
of 100 cells per mL. For the periodic cell counts the dilution 
factor in the measured cell density formula was equal to one 
as the sample was not diluted, for the initial cloning procedure 
dilution calculation, it was equivalent to 10 as the cell pellet 
was diluted by 10 mL. 
	 The hemocytometer was used to count the cell population 
of the VcaP single-cell population on a weekly basis for a six-
week period. Counts were taken only during transfers of the 
population to larger plates and with small amounts of trypsin in 
order to limit potential confounding variables. Over the course 
of this experiment, the VcaP population was transferred four 
times and trypsinized for a total of seven. As the cell counts 
for the VcaP cell line were gathered over the experimental 
period, a graph was created to visually display the growth of 
the homogeneous cell population. 
	 Throughout the course of the study, continued contact 
was made with the primary investigator, the lab manager, 
and the lab attendant of the research lab that housed the cell 
population. 
 
Mathematical Modeling 
	 After population counts were collected over a period of 
six weeks, the data was applied to five mathematical growth 
functions commonly used to model tumor growth in the human 
body: the Exponential model, the Gompertz model, the 
Logistic model, the Linear model, and the Bertalanffy model. 
Each function was applied to the data provided by the VcaP 
single clone cell population via optimization through Solver 
(Frontline Systems, Google Sheets), and the parameters for 
each differential equation was generated with the objective of 
a minimum sum of squared residuals given by:

with yi representing the experimental data points, and y 
representing the corresponding data points on the model [3]. 
After the parameters were fitted the normalized mean square 
error (NMSE) and Aikake’s information criterion (AICc) were 
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also computed using Google Sheets. These are given by:

 

with K being the number of parameters and n being the 
number of data points. Since models have a different number 
of parameters, the AICc was used to correct for smaller 
sample sizes as well as eliminate potential bias having to 
do with parameters. It is known that models with a higher 
number of free parameters will ultimately be able to fit the 
data better than those with fewer parameters. A higher AICc 
in comparison to the other models would signify that there 
is a potential bias in correlation to the data for that specific 
model. Models with a NMSE and/or AICc relatively close to 
zero were deemed to be the best fit. AICc is also meant to be 
interpreted in terms of absolute value, so positive or negative 
values hold no difference [3]. 
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