
18 OCT 2020 | VOL 3 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

classification-based machine learning models. Supervised
learning works by, for example, provide an image of a cat as
input and the label “cat” as the output, and an image of a dog
with the “dog” label. With this input and output, the network
calculates loss based on its predictions from its weights. The
network then uses an algorithm, to modify the weights and
biases to better map the input to the correct output and to
minimize loss. Hence, it predicts whether an image is a “cat”
or “dog”. As AI and machine learning tasks become more
common in the general public, the field must reduce the need
for large data to create accurate models. This would promote
innovation that is truly democratic and open, free from the
burden of having to amass large datasets. Doing so, AI is
made less niche and more accessible for commercial and
social use.
 AI has been growing exponentially, getting closer and
closer towards general AI which is AI that can learn to do
myriad tasks, unlike specialized AI made for one specific task
(1). One large step towards this has been the development
of transfer learning. Transfer learning techniques are being
used extensively due to their abilities to provide high accuracy
by leveraging pre-learnt weights from a pretrained model
to another (5). This field is significant because it reduces
dependence on large datasets without compromising
accuracy (6). Traditional machine learning techniques are
based on the model of isolated, single task learning wherein
knowledge from a past task is not leveraged for other tasks.
Transfer learning, on the other hand, relies on previously
learnt tasks which could allow the learning process to be
faster, have higher accuracy and require less training (6).
Transfer learning allows a source task to affect the inductive
bias of the target task.
 Fine-tuning is the process of unfreezing different
layers in the base model (pre-trained model) (5). We refer
to nomenclature in transfer learning of “unfreezing” which
means “making a base layer trainable.''. Usually, transfer
learning is conducted with deep neural networks by fine-
tuning a pretrained model on the source task using data
from the target task. This study investigates how fine-tuning
a model (freezing and unfreezing different layers) will affect
the performance (measured using accuracy) for small
and dissimilar datasets. The VGG16 convolutional neural
network, which was trained on the ImageNet dataset (6), is
used as a base model for this investigation. A convolutional
neural network is merely a deep learning algorithm which

Transfer Learning for Small and Different Datasets:
Fine-Tuning A Pre-Trained Model Affects Performance

SUMMARY
Machine learning and deep learning algorithms
are rapidly becoming integrated into everyday life.
Whether it is in your face-ID to unlock your phone
or the detection of deadly diseases like melanoma,
neural networks have been traditionally designed
to work in isolation to achieve amazing tasks once
thought impossible by computers. However, these
algorithms are trained to be able to solve extremely
specific tasks. Models have to be rebuilt from scratch
once the source and target domains change and the
required task changes. Transfer learning is defined as
a field that leverages learnings and weights from one
task for related tasks. This process is quite smooth
if one has enough data and the task is similar to the
previous, already learnt task. However, research on
when these two conditions are not met is scarce.
The purpose of this research is to investigate how
fine-tuning a pre-trained image classification model
will affect accuracy for a binary image classification
task. Image classification is widely used, and when
only a small dataset is available, transfer learning
becomes an important asset. Convolutional neural
networks and the VGG-16 model trained on Imagenet
will be used. Through this study, I am investigating
whether there are specific trends in how fine-tuning
affects accuracy when used for a small dataset
which is dissimilar from Imagenet. This will allow for
the beginning of investigating quantifiable methods
to train a model when using Transfer Learning
techniques.

INTRODUCTION
 The increasing use of artificial intelligence (computer
systems that mimic human intelligence) (1), or AI, in myriad
tasks and fields (2) has created a need for large amounts of
data collection. Weights and biases are learnable parameters
of a machine learning model which improve while the model
trains on training data to provide an optimum model and
correct predictions (3). Supervised learning is when the neural
network is fed labelled data known to be correct (4). However,
in this natural, chaotic world, the ability to collect large amounts
of data and labelling data points is tedious, often restricted,
and uses many resources which are not readily available.
This could reduce one's ability to use supervised learning,
one of the most common and powerful methods to train

Ananya Gupta1 and Meghna Gupta2

1 The International School Bangalore, Bangalore, Karnataka, India
2 Adarsh Palm Retreat, Bangalore, Karnataka, India

Article

18 OCT 2020 | VOL 3 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

takes in an input image, assigns importance (learning weights
and biases) to various aspects or objects in the image and is
able to differentiate one from the other. The target task is to
classify cartoon illustrations of textbooks as male or female,
which is quite different from the source task of the base model
which is classifying objects (10). The dataset of 640 training
images is also dissimilar to the Imagenet dataset, which is
an important factor in this study. While other research has
focused on how performance varies with fine-tuning, this
investigation focuses on specifically small and different
datasets (11-12). The size of training data used here is neither
at the extreme of one-shot learning or the large datasets in
deep neural networks. Hence, through these experiments we
try to investigate whether quantifiable trends are noticed in
how performance varies with fine-tuning patterns. We predict
that quantifiable patterns will be noticed, as performance will
first increase and then gradually decrease.

RESULTS
 The pre-trained model used in this study is the VGG16
convolutional neural network, which was trained on the
ImageNet dataset (6). On top of the base VGG16 model, further
convolutional neural network layers are built. This specific
experimental setup was chosen due to the widespread use
of VGG16 in the Transfer Learning corpus, thus becoming a
widely accepted model. By fine-tuning different layers and
training with this small, dissimilar dataset we have found
that the validation accuracy follows a clear trend with layers
becoming unfrozen (Table 1). Validation accuracy first
increases from 86.67% when layer 5 is unfrozen to 90.00% as

the lower layer, layer 4 is unfrozen. This trend then shifts as
validation accuracy continues decreasing when lower layers
are unfrozen. There is a linear trend observed once layer 3 is
reached, with validation accuracy falling linearly up to layer 0
being unfrozen. Hence, there is an initial increase and then a
gradual fall in validation accuracy (Figure 1).
 The training accuracy follows a distinct trend as layers
become unfrozen (Table 1). Training accuracy first stagnates
for layers 5 and 4 unfrozen, with an accuracy of 99.69%.
After this plateau, there is a linear decrease in the training
accuracy until layer 1. This is a relatively steep decrease.
After reaching layer 1, there is a fall in the rate of decrease of
the training accuracy. This means that the decrease per layer
becomes lesser at the last data point, between layer 1 and 0.
Hence, the graph follows the phases- stagnation, steep and
linear decrease, and finally a gradual linear decrease. These
phases are attained as lower and lower layers are unfrozen
(Figure 1).

DISCUSSION
 The trend followed by the validation accuracy and
training accuracy is quite similar as seen in (Figure 2). The
similar bell-shaped trends for both portray that measures of
performance change in similar patterns as lower layers are
unfrozen. This corresponds to the weights and biases learnt,
allowing for a justified analysis since it conveys that the model
is not overfitting as the validation and training accuracy have
a similar trend. Overfitting is when the model only works well
on a particular dataset (such as its train dataset) but is unable
to perform well on other datasets (such as the validation or
test dataset) (7). Since our validation and training accuracies

Unfrozen Layer in Base Model

A
cc

ur
ac

y
in

 P
er

ce
nt

ag
e

50

60

70

80

90

10
0

5 4 3 2 1 0

Training Accuracy Validation accuracy

Accuracy changes with Lower Layers Unfrozen

Figure 1. Unfreezing lower layers causes validation accuracy to
first increase and then decrease. It also causes training accuracy
to stagnate and then decrease. A line of the data of Table 1 was
plotted using linear interpolation. This interpolated line between each
consecutive data point is used only to analyze the rate of change of
accuracy with lower layers unfrozen for the discrete data values.

Unfrozen Layer in Base Model

A
cc

ur
ac

y
in

 P
er

ce
nt

ag
e

0

25

50

75

100

5 4 3 2 1 0

Training
Accuracy

Validation
accuracy

How accuracy changes with fine-tuning

Figure 2. A bar graph showing how unfreezing lower layers causes
validation accuracy to first increase and then decrease. It also
causes training accuracy to stagnate and then decrease. Results of
Table 1 are used. Both types of accuracies were plotted to enable
comparisons, portraying that the model is not overfitting.

Table 1. Unfreezing lower layers causes validation accuracy to first increase and then decrease. It also causes training accuracy to stagnate
and then decrease. These values were based on analogous training conditions with the only difference being which layer was unfrozen. These
values are after 100 epochs of training.

Unfrozen Layer 5 4 3 2 1 0
Training Accuracy 99.69% 99.69% 96.52% 91.99% 88.36% 87.76%

Validation accuracy 86.67% 90.00% 79.87% 76.67 % 73.47% 69.73%

18 OCT 2020 | VOL 3 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

are similar, it is fair to say that the model is not overfitting.
Alongside, we note that the dataset used is relatively small,
at only 640 training images, and is very different from the
original Imagenet dataset. This serves the purpose of this
study to investigate small datasets that are different from
the original dataset. Data pre-processing is conducted in
the form of Keras’s data augmentation techniques which
enables greater diversity of data available for training models,
improving generalizations.
 When only layer 5 is being fine-tuned, it is known that
the weights learnt by the pre-trained model are more for
the specific target task and domain of binary classification
of male and female cartoon caricatures. This specificity is
why it has the highest training accuracy and a high validation
accuracy. This conclusion that specific training is better for a
small dataset with data dissimilar from the ImageNet data is
explained by the fact that there are very specific differences
in the source and target domains. What this means is that for
an unfamiliar task for the pre-trained model, general features
such as edges are common but specific differences such as
hair outline are extremely different, which makes specific
training a necessity. However, its validation accuracy is lesser
than when only layer 4 is being fine-tuned. This is because
there is a fine line between being specific and being extremely
specific wherein the general features are learnt incorrectly or
become counterproductive. When only layer 4 is being fine-
tuned, a great balance between the specificity and generality
is struck. When taking a deeper look into the function of Layer
4 and 5 in-terms of specificity of weight and feature learning,
this distinction becomes lucid.
 Layer 5 has the potential to have higher validation
accuracy if there was a greater amount of data, as this would
lead to better generalizations.
 When only layer 3 is unfrozen, there is a marked fall in
training accuracy and validation accuracy compared to the
fall in performance between unfreezing layers 5 and layer
4. This steep and sudden fall is at the hands of a shift in
learning to more general weights. The weights learnt are not
specific to the target task, causing a fall in training accuracy
and validation accuracy as the model is not well trained for
this dissimilar dataset. Layer 2 and 1 follow a similar trend of
falling accuracies as less specific features and weights are
learnt. Accuracies could be increased if there was a larger,
more similar dataset, but for a small and dissimilar dataset
this trend is followed while fine-tuning lower layers.
 Finally, if no layers are fine-tuned, training accuracy and
validation accuracy decreases once again. This is because
the dataset is dissimilar to the ImageNet dataset. Hence, due
to dissimilarities, the pre-trained model trained on ImageNet
would not perform well on the current task. There are no
updates to the weights, so the model is not learning new
weights. Thus, it performs poorly for this dissimilar dataset.
 Therefore, the results support the hypothesized trend
that performance will first increase and then gradually
decrease, as lower layers are left unfrozen. These results and

corresponding theoretical justifications support the original
hypothesis. With these results and hypothesis, we have found
a quantified trend in how performance varies with fine-tuning
as lower layers are unfrozen. These results on optimizing the
fine-tuning combination to obtain higher model performance
will allow better transfer learning models to be created for
small, dissimilar datasets. One could further expand the
scope of this investigation by exploring how performance
changes with different combinations of unfrozen layers
(specifically for VGG16, one could explore 32 combinations
of 5C5 which gives 32). One could also perform similar
investigations using different pre-trained models such as
Inception, ResNet, VGG19 and so on to obtain the optimum
fine-tuning combinations for these base models since this
investigation focuses on the VGG16 base model.

MATERIALS AND METHODS
 The VGG16 convolutional neural network pre-trained
model, which was trained on ImageNet, was used for this
experiment. VGG16 is a convolutional neural network
model that consists of 16 weight layers, 13 convolutional
layers, and 3 fully connected layers with 138 million total
number of parameters (8). The model achieved 92.7% test
accuracy in ImageNet (8). It has slowly become one of the
most popular pre-trained models used, especially in Transfer
Learning tasks, alongside models like ResNet, VGG19, and
many more. It was trained on the ImageNet dataset which is
a dataset of over 15 million labeled high-resolution images
belonging to roughly 22,000 categories. The images were
collected from the web and labeled by human labelers using
Amazon’s Mechanical Turk crowd-sourcing tool, ImageNet,
which consists of variable-resolution images. Therefore, the
ImageNet images were down sampled to a fixed resolution of
256×256. Given a rectangular image, the image is rescaled
and cropped out the central 256×256 patch from the resulting

224 x 224 x 3

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512

14 x 14 x 512

7 x 7 x 512

Convolution + Rectified Linear Unit (ReLu)

Max Pooling

Fully connected + ReLu

Softmax

1x1x1000

Figure 3. The VGG16 convolutional neural network pre-trained
model architecture is detailed. The different types of layers, along
with the input shapes are portrayed. A legend was also used to
visualize how the model was built. (8)

18 OCT 2020 | VOL 3 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

image (9). The model architecture of VGG16 is depicted in
(Figure 3) (6, 17).
 Our dataset contains 2 classes - male and female
textbook illustrations. It consists of 640 training images and
65 validation images. It was created manually since such a
dataset does not exist to date, and alongside is dissimilar to
the ImageNet dataset (which is a key part of this investigation)
(10). We further confirmed that the images are dissimilar by
attempting to classify the illustrations using purely the VGG16
model, which produced incorrect predictions. Alongside,
after going through the categories classified in ImageNet, it is
known that the dataset used in this investigation is different.
We built the dataset by taking images from the Karnataka
State Board textbooks in India, and our dataset can be seen
here (10). Manual data collection was conducted to ensure
uniqueness of the dataset. The data was split into 335 images
of female illustrations and 337 male illustrations, to prevent
any sampling bias. First, all the images are resized to 150x150
pixels, with 3 channels of red, green, and blue. The data is
split into 3 datasets: training data, validation data, and test
data. The images are converted to arrays, and each image is
given a class of either male or female, i.e., 1 or 0. The images
with their corresponding classes are shuffled. Shuffling helps
reduce variance and reduce overfitting. It ensures that the
gradient descent algorithm does not become “stuck” to a
certain local minimum which prevents it from reaching the
global minimum, by making sure that the input X changes with
each iteration and is not static (13).
 Data augmentation is effective when using small datasets
in convolutional neural networks as it helps in reducing
overfitting through rotation, rescaling, flip, etc. (14). For this
project, the ImageDataGenerator factors of Keras are used
for data augmentation and normalization of training dataset,
which are detailed in Table 2 below.
 The ImageDataGenerator factors used for data
augmentation and normalization of validation dataset are
given by a Rescale factor of 1/255. These several parameters
allow for powerful data augmentation techniques. The data
augmentation techniques are applied on the data (Figure 4).
 According to which layers are to be fine-tuned (or
unfrozen), the model is built with setting, for example, block 5

trainable as true. A Keras with tensorflow Sequential model
is built, and the pre-trained model with the parameter of
“trainable” set to “true” or “false” is added to the Sequential
model. On top of that, convolutional neural network layers
are added, as seen in Table 3. First, a Dense layer with a
Rectified Linear Unit (ReLu) activation function is added. The
Dense layer is a fully connected layer, which means that each
neuron in a layer is connected to those in the following layer,
and the parameters used here were 512 units (units are the
output dimensions) and input dimension is the same as input
shape. ReLu is a simple calculation that relays back the
value given as the input directly or returns 0.0 if the number
is ≤ 0.0. To train deep neural networks like the one used here
and to use stochastic gradient descent with backpropagation
of errors, an activation function is needed which can behave
as if it were a linear function but in reality is a nonlinear
function pertaining to complex relations in the data from
which the model learns weights. The function must also allow
greater sensitivity to the activation sum input and avoids easy
saturation. Hence, the answer to all these criteria is the Relu
activation function (15). It acts linear for all values greater than
0 but is actually a non-linear graph since it is flat for numbers
≤ 0.0. This is why an activation function is used for the Dense
layer. Then, a Dropout layer is added with a 0.3 dropout rate.
The function of the Dropout layer is to, at each step during
training, randomly set input units to 0 with a frequency of
0.3. This is key to prevent overfitting and helps ensure better
regularization. After this, another Dense layer followed
by a Dropout layer is added, with the same parameters as
specified before. The last layer added is a Dense layer with
one unit to provide a one-dimensional output, along with the
sigmoid activation function. The sigmoid activation function
(also known as the logistic function) takes in the input and the
function converts it into an output of a value in the range 0.0 to
1.0 (16). Binary cross-entropy is used to calculate loss since
this is a binary classification problem, where y is the label and
p(y) is the predicted probability of it being that class:

 It computes a score of the average difference between

Figure 4. Sample of data augmentation conducted on the images in
the dataset. The augmentation techniques are described in Table 2.
Random combinations of data augmentation techniques were used.
The image above displays examples of images from the two classes
- ‘male’ and ‘female’.

Table 2. The different data augmentation techniques used for the
training dataset with their corresponding numerical factor. This is a
part of our data pre-processing and is especially useful for small
datasets like ours.

Type Factor

Rescale 1/255

Zoom Range 0.3

Rotation Range 50

Width Shift Range 0.2

Height Shift Range 0.2

Shear Range 0.2

Horizontal Flip True

Fill Mode Nearest

18 OCT 2020 | VOL 3 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

the true and predicted probability distributions for predicting
class 1 (17). Optimizers are algorithms which are implemented
to vary the attributes of your neural network so as to obtain
the minimum loss. They guide how a machine learning model
learns and allows fast computation. They also prevent the
model from believing that a local minimum has optimum
weights because even though the loss function is a minimum
at that local point, the optimum is only reached at the global
minimum. This algorithm allows the model to find the globally
optimum weights, serving its function as an optimizer. The
RMSprop optimizer specifically does this by maintaining a
moving average of square gradients and dividing the gradient
by the root of this average, working on plain momentum, not
Nesterov momentum. The effectiveness of this optimizer is
why it is used for this task, and a learning rate hyperparameter
of 1e-5 is also chosen. The learning rate was chosen such
that the model does not get “stuck” at any local minima, and
it also ensures that the model does not make any sudden,
large updates to the weights such that it is unfavourable and
harmful for the model (6).
 Experiments were conducted on Google Colaboratory,
with a 12GB NVIDIA Tesla K80 GPU. The model training is
set with a batch size of 30 examples, 100 steps per epoch for

100 epochs and the Keras RMSProp optimizer. The validation
steps were 50 steps. After 100 epochs, the training accuracy
and validation accuracy are measured (Table 1).

Received: July 21, 2020
Accepted: October 13 2020
Published: October 18, 2020

REFERENCES
1. Wang, Pei. “On Defining Artificial Intelligence.” Journal

of Artificial General Intelligence, vol. 10, no. 2, 2019, pp.
1–37., doi:10.2478/jagi-2019-0002.

2. Poola, Indrasen. “How Artificial Intelligence in Impacting
Real Life Every Day.” International Journal for Advance
Research and Development., vol. 2, Oct. 2017, pp. 96–
100.

3. “Weight (Artificial Neural Network).” DeepAI, 17 May
2019, deepai.org/machine-learning-glossary-and-terms/
weight-artificial-neural-network.

4. Amidi, Afshine, and Shervine Amidi. “Supervised
Learning Cheatsheet Star.” CS 229 - Supervised
Learning Cheatsheet, Stanford University, stanford.
edu/~shervine/teaching/cs-229/cheatsheet-supervised-
learning.

5. Weiss, Karl, et al. “A Survey of Transfer Learning.” Journal
of Big Data, vol. 3, no. 1, 2016. Crossref, doi:10.1186/
s40537-016-0043-6.

6. Shu, Mengying. “Deep Learning for Image Classification
on Very Small Datasets Using Transfer Learning.” Iowa
State University Digital Repository, Iowa State University,
2019, lib.dr.iastate.edu/creativecomponents/345/.

7. Abu-Mostafa, Yaser. “DETERMINISTIC NOISE.”
Deterministic Noise - Overfitting (Abu-Mostafa),
California Institute of Technology, 2012, work.caltech.
edu/library/112.html.

8. Simonyan, Karen, and Andrew Zisserman. “Very
Deep Convolutional Networks for Large-Scale Image
Recognition.” ArXiv.org, University of Oxford, 10 Apr.
2015, arxiv.org/abs/1409.1556.

9. Fei-Fei, L., et al. “ImageNet: Constructing a Large-Scale
Image Database.” Journal of Vision, vol. 9, no. 8, 2010,
pp. 1037–1037., doi:10.1167/9.8.1037.

10. Gupta, Ananya. “Ananyagup/Classification-of-Males-
and-Females-in-Textbook-Illustrations-.” GitHub, 18 July
2020, github.com/ananyagup/Classification-of-Males-
and-Females-in-Textbook-illustrations-.

11. Kandel, Ibrahem, and Mauro Castelli. “How Deeply to
Fine-Tune a Convolutional Neural Network: A Case Study
Using a Histopathology Dataset.” Applied Sciences, vol.
10, no. 10, 2020, p. 3359., doi:10.3390/app10103359.

12. 12. Guo, Yunhui, et al. “SpotTune: Transfer Learning
Through Adaptive Fine-Tuning.” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, doi:10.1109/cvpr.2019.00494.

13. Meng, Qi, et al. “Convergence Analysis of Distributed

Table 3. The model architecture of the VGG16 convolution neural
network. The layers within each of the blocks in the base VGG16
model, along with the added convolutional neural network layers are
displayed. The base layers were optimized through the experiments.

Convolution2D
Conv Block 1Convolution2D

MaxPooling2D

Convolution2D
Conv Block 2 - Frozen Convolution2D

MaxPooling2D

Convolution2D
Conv Block 3 - FrozenConvolution2D

Convolution2D

MaxPooling2D

Convolution2D
Conv Block 4 - TrainableConvolution2D

Convolution2D

MaxPooling2D

Convolution2D
Conv Block 5 - Trainable Convolution2D

Convolution2D

MaxPooling2D

Flatten VGG16 Base Model final layer

Dense
Added CNN layersDropout

Dense

Dropout

Dense

18 OCT 2020 | VOL 3 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

Stochastic Gradient Descent with Shuffling.”
Neurocomputing, vol. 337, 2019, pp. 46–57., doi:10.1016/j.
neucom.2019.01.037.

14. Wang, Jason, and Luis Perez. “The Effectiveness of
Data Augmentation in Image Classification Using Deep
Learning.” cs231n, Stanford University, 2017, cs231n.
stanford.edu/reports/2017/pdfs/300.pdf.

15. Agarap, Abien Fred. “Deep Learning Using Rectified
Linear Units (ReLU).” ArXiv.org, Cornell University Arxiv,
7 Feb. 2019, arxiv.org/abs/1803.08375.

16. Jure Leskovec et al. “Neural Nets and Deep Learning.”
Mining of Massive Datasets, 3rd ed., Cambridge
University Press, Cambridge, 2020, pp. 498–543.

17. Bishop, Christopher M. Pattern Recognition and Machine
Learning. Springer New York, 2016.

Copyright: © 2020 Gupta and Gupta. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

