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classification-based machine learning models. Supervised 
learning works by, for example, provide an image of a cat as 
input and the label “cat” as the output, and an image of a dog 
with the “dog” label. With this input and output, the network 
calculates loss based on its predictions from its weights. The 
network then uses an algorithm, to modify the weights and 
biases to better map the input to the correct output and to 
minimize loss. Hence, it predicts whether an image is a “cat” 
or “dog”. As AI and machine learning tasks become more 
common in the general public, the field must reduce the need 
for large data to create accurate models. This would promote 
innovation that is truly democratic and open, free from the 
burden of having to amass large datasets. Doing so, AI is 
made less niche and more accessible for commercial and 
social use. 
 AI has been growing exponentially, getting closer and 
closer towards general AI which is AI that can learn to do 
myriad tasks, unlike specialized AI made for one specific task 
(1). One large step towards this has been the development 
of transfer learning. Transfer learning techniques are being 
used extensively due to their abilities to provide high accuracy 
by leveraging pre-learnt weights from a pretrained model 
to another (5). This field is significant because it reduces 
dependence on large datasets without compromising 
accuracy (6). Traditional machine learning techniques are 
based on the model of isolated, single task learning wherein 
knowledge from a past task is not leveraged for other tasks. 
Transfer learning, on the other hand, relies on previously 
learnt tasks which could allow the learning process to be 
faster, have higher accuracy and require less training (6). 
Transfer learning allows a source task to affect the inductive 
bias of the target task. 
 Fine-tuning is the process of unfreezing different 
layers in the base model (pre-trained model) (5). We refer 
to nomenclature in transfer learning of “unfreezing” which 
means “making a base layer trainable.''. Usually, transfer 
learning is conducted with deep neural networks by fine-
tuning a pretrained model on the source task using data 
from the target task. This study investigates how fine-tuning 
a model (freezing and unfreezing different layers) will affect 
the performance (measured using accuracy) for small 
and dissimilar datasets. The VGG16 convolutional neural 
network, which was trained on the ImageNet dataset (6), is 
used as a base model for this investigation. A convolutional 
neural network is merely a deep learning algorithm which 
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SUMMARY
Machine learning and deep learning algorithms 
are rapidly becoming integrated into everyday life. 
Whether it is in your face-ID to unlock your phone 
or the detection of deadly diseases like melanoma, 
neural networks have been traditionally designed 
to work in isolation to achieve amazing tasks once 
thought impossible by computers. However, these 
algorithms are trained to be able to solve extremely 
specific tasks. Models have to be rebuilt from scratch 
once the source and target domains change and the 
required task changes. Transfer learning is defined as 
a field that leverages learnings and weights from one 
task for related tasks. This process is quite smooth 
if one has enough data and the task is similar to the 
previous, already learnt task. However, research on 
when these two conditions are not met is scarce. 
The purpose of this research is to investigate how 
fine-tuning a pre-trained image classification model 
will affect accuracy for a binary image classification 
task. Image classification is widely used, and when 
only a small dataset is available, transfer learning 
becomes an important asset. Convolutional neural 
networks and the VGG-16 model trained on Imagenet 
will be used. Through this study, I am investigating 
whether there are specific trends in how fine-tuning 
affects accuracy when used for a small dataset 
which is dissimilar from Imagenet. This will allow for 
the beginning of investigating quantifiable methods 
to train a model when using Transfer Learning 
techniques. 

INTRODUCTION
 The increasing use of artificial intelligence (computer 
systems that mimic human intelligence) (1), or AI, in myriad 
tasks and fields (2) has created a need for large amounts of 
data collection. Weights and biases are learnable parameters 
of a machine learning model which improve while the model 
trains on training data to provide an optimum model and 
correct predictions (3). Supervised learning is when the neural 
network is fed labelled data known to be correct (4). However, 
in this natural, chaotic world, the ability to collect large amounts 
of data and labelling data points is tedious, often restricted, 
and uses many resources which are not readily available. 
This could reduce one's ability to use supervised learning, 
one of the most common and powerful methods to train 
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takes in an input image, assigns importance (learning weights 
and biases) to various aspects or objects in the image and is 
able to differentiate one from the other. The target task is to 
classify cartoon illustrations of textbooks as male or female, 
which is quite different from the source task of the base model 
which is classifying objects (10). The dataset of 640 training 
images is also dissimilar to the Imagenet dataset, which is 
an important factor in this study. While other research has 
focused on how performance varies with fine-tuning, this 
investigation focuses on specifically small and different 
datasets (11-12). The size of training data used here is neither 
at the extreme of one-shot learning or the large datasets in 
deep neural networks. Hence, through these experiments we 
try to investigate whether quantifiable trends are noticed in 
how performance varies with fine-tuning patterns. We predict 
that quantifiable patterns will be noticed, as performance will 
first increase and then gradually decrease.

RESULTS
 The pre-trained model used in this study is the VGG16 
convolutional neural network, which was trained on the 
ImageNet dataset (6). On top of the base VGG16 model, further 
convolutional neural network layers are built. This specific 
experimental setup was chosen due to the widespread use 
of VGG16 in the Transfer Learning corpus, thus becoming a 
widely accepted model. By fine-tuning different layers and 
training with this small, dissimilar dataset we have found 
that the validation accuracy follows a clear trend with layers 
becoming unfrozen (Table 1). Validation accuracy first 
increases from 86.67% when layer 5 is unfrozen to 90.00% as 

the lower layer, layer 4 is unfrozen. This trend then shifts as 
validation accuracy continues decreasing when lower layers 
are unfrozen. There is a linear trend observed once layer 3 is 
reached, with validation accuracy falling linearly up to layer 0 
being unfrozen. Hence, there is an initial increase and then a 
gradual fall in validation accuracy (Figure 1). 
 The training accuracy follows a distinct trend as layers 
become unfrozen (Table 1). Training accuracy first stagnates 
for layers 5 and 4 unfrozen, with an accuracy of 99.69%. 
After this plateau, there is a linear decrease in the training 
accuracy until layer 1. This is a relatively steep decrease. 
After reaching layer 1, there is a fall in the rate of decrease of 
the training accuracy. This means that the decrease per layer 
becomes lesser at the last data point, between layer 1 and 0. 
Hence, the graph follows the phases- stagnation, steep and 
linear decrease, and finally a gradual linear decrease. These 
phases are attained as lower and lower layers are unfrozen 
(Figure 1). 

DISCUSSION
 The trend followed by the validation accuracy and 
training accuracy is quite similar as seen in (Figure 2). The 
similar bell-shaped trends for both portray that measures of 
performance change in similar patterns as lower layers are 
unfrozen. This corresponds to the weights and biases learnt, 
allowing for a justified analysis since it conveys that the model 
is not overfitting as the validation and training accuracy have 
a similar trend. Overfitting is when the model only works well 
on a particular dataset (such as its train dataset) but is unable 
to perform well on other datasets (such as the validation or 
test dataset) (7). Since our validation and training accuracies 
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Figure 1. Unfreezing lower layers causes validation accuracy to 
first increase and then decrease. It also causes training accuracy 
to stagnate and then decrease. A line of the data of Table 1 was 
plotted using linear interpolation. This interpolated line between each 
consecutive data point is used only to analyze the rate of change of 
accuracy with lower layers unfrozen for the discrete data values. 
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Figure 2. A bar graph showing how unfreezing lower layers causes 
validation accuracy to first increase and then decrease. It also 
causes training accuracy to stagnate and then decrease. Results of 
Table 1 are used. Both types of accuracies were plotted to enable 
comparisons, portraying that the model is not overfitting. 

Table 1. Unfreezing lower layers causes validation accuracy to first increase and then decrease. It also causes training accuracy to stagnate 
and then decrease. These values were based on analogous training conditions with the only difference being which layer was unfrozen. These 
values are after 100 epochs of training. 

Unfrozen Layer 5 4 3 2 1 0
Training Accuracy 99.69% 99.69% 96.52% 91.99% 88.36% 87.76%

Validation accuracy 86.67% 90.00% 79.87% 76.67 % 73.47% 69.73%
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are similar, it is fair to say that the model is not overfitting. 
Alongside, we note that the dataset used is relatively small, 
at only 640 training images, and is very different from the 
original Imagenet dataset. This serves the purpose of this 
study to investigate small datasets that are different from 
the original dataset. Data pre-processing is conducted in 
the form of Keras’s data augmentation techniques which 
enables greater diversity of data available for training models, 
improving generalizations. 
    When only layer 5 is being fine-tuned, it is known that 
the weights learnt by the pre-trained model are more for 
the specific target task and domain of binary classification 
of male and female cartoon caricatures. This specificity is 
why it has the highest training accuracy and a high validation 
accuracy. This conclusion that specific training is better for a 
small dataset with data dissimilar from the ImageNet data is 
explained by the fact that there are very specific differences 
in the source and target domains. What this means is that for 
an unfamiliar task for the pre-trained model, general features 
such as edges are common but specific differences such as 
hair outline are extremely different, which makes specific 
training a necessity. However, its validation accuracy is lesser 
than when only layer 4 is being fine-tuned. This is because 
there is a fine line between being specific and being extremely 
specific wherein the general features are learnt incorrectly or 
become counterproductive. When only layer 4 is being fine-
tuned, a great balance between the specificity and generality 
is struck. When taking a deeper look into the function of Layer 
4 and 5 in-terms of specificity of weight and feature learning, 
this distinction becomes lucid.
 Layer 5 has the potential to have higher validation 
accuracy if there was a greater amount of data, as this would 
lead to better generalizations.
    When only layer 3 is unfrozen, there is a marked fall in 
training accuracy and validation accuracy compared to the 
fall in performance between unfreezing layers 5 and layer 
4. This steep and sudden fall is at the hands of a shift in 
learning to more general weights. The weights learnt are not 
specific to the target task, causing a fall in training accuracy 
and validation accuracy as the model is not well trained for 
this dissimilar dataset. Layer 2 and 1 follow a similar trend of 
falling accuracies as less specific features and weights are 
learnt. Accuracies could be increased if there was a larger, 
more similar dataset, but for a small and dissimilar dataset 
this trend is followed while fine-tuning lower layers.
 Finally, if no layers are fine-tuned, training accuracy and 
validation accuracy decreases once again. This is because 
the dataset is dissimilar to the ImageNet dataset. Hence, due 
to dissimilarities, the pre-trained model trained on ImageNet 
would not perform well on the current task. There are no 
updates to the weights, so the model is not learning new 
weights. Thus, it performs poorly for this dissimilar dataset. 
 Therefore, the results support the hypothesized trend 
that performance will first increase and then gradually 
decrease, as lower layers are left unfrozen. These results and 

corresponding theoretical justifications support the original 
hypothesis. With these results and hypothesis, we have found 
a quantified trend in how performance varies with fine-tuning 
as lower layers are unfrozen. These results on optimizing the 
fine-tuning combination to obtain higher model performance 
will allow better transfer learning models to be created for 
small, dissimilar datasets. One could further expand the 
scope of this investigation by exploring how performance 
changes with different combinations of unfrozen layers 
(specifically for VGG16, one could explore 32 combinations 
of 5C5 which gives 32). One could also perform similar 
investigations using different pre-trained models such as 
Inception, ResNet, VGG19 and so on to obtain the optimum 
fine-tuning combinations for these base models since this 
investigation focuses on the VGG16 base model. 

MATERIALS AND METHODS
 The VGG16 convolutional neural network pre-trained 
model, which was trained on ImageNet, was used for this 
experiment. VGG16 is a convolutional neural network 
model that consists of 16 weight layers, 13 convolutional 
layers, and 3 fully connected layers with 138 million total 
number of parameters (8). The model achieved 92.7% test 
accuracy in ImageNet (8). It has slowly become one of the 
most popular pre-trained models used, especially in Transfer 
Learning tasks, alongside models like ResNet, VGG19, and 
many more. It was trained on the ImageNet dataset which is 
a dataset of over 15 million labeled high-resolution images 
belonging to roughly 22,000 categories. The images were 
collected from the web and labeled by human labelers using 
Amazon’s Mechanical Turk crowd-sourcing tool, ImageNet, 
which consists of variable-resolution images. Therefore, the 
ImageNet images were down sampled to a fixed resolution of 
256×256. Given a rectangular image, the image is rescaled 
and cropped out the central 256×256 patch from the resulting 
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Figure 3. The VGG16 convolutional neural network pre-trained 
model architecture is detailed. The different types of layers, along 
with the input shapes are portrayed. A legend was also used to 
visualize how the model was built. (8)   
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image (9). The model architecture of VGG16 is depicted in 
(Figure 3) (6, 17). 
 Our dataset contains 2 classes - male and female 
textbook illustrations. It consists of 640 training images and 
65 validation images. It was created manually since such a 
dataset does not exist to date, and alongside is dissimilar to 
the ImageNet dataset (which is a key part of this investigation) 
(10). We further confirmed that the images are dissimilar by 
attempting to classify the illustrations using purely the VGG16 
model, which produced incorrect predictions. Alongside, 
after going through the categories classified in ImageNet, it is 
known that the dataset used in this investigation is different. 
We built the dataset by taking images from the Karnataka 
State Board textbooks in India, and our dataset can be seen 
here (10). Manual data collection was conducted to ensure 
uniqueness of the dataset. The data was split into 335 images 
of female illustrations and 337 male illustrations, to prevent 
any sampling bias. First, all the images are resized to 150x150 
pixels, with 3 channels of red, green, and blue. The data is 
split into 3 datasets: training data, validation data, and test 
data. The images are converted to arrays, and each image is 
given a class of either male or female, i.e., 1 or 0. The images 
with their corresponding classes are shuffled. Shuffling helps 
reduce variance and reduce overfitting. It ensures that the 
gradient descent algorithm does not become “stuck” to a 
certain local minimum which prevents it from reaching the 
global minimum, by making sure that the input X changes with 
each iteration and is not static (13).
 Data augmentation is effective when using small datasets 
in convolutional neural networks as it helps in reducing 
overfitting through rotation, rescaling, flip, etc. (14). For this 
project, the ImageDataGenerator factors of Keras are used 
for data augmentation and normalization of training dataset, 
which are detailed in Table 2 below.
 The ImageDataGenerator factors used for data 
augmentation and normalization of validation dataset are 
given by a Rescale factor of 1/255. These several parameters 
allow for powerful data augmentation techniques. The data 
augmentation techniques are applied on the data (Figure 4). 
 According to which layers are to be fine-tuned (or 
unfrozen), the model is built with setting, for example, block 5 

trainable as true. A Keras with tensorflow Sequential model 
is built, and the pre-trained model with the parameter of 
“trainable” set to “true” or “false” is added to the Sequential 
model. On top of that, convolutional neural network layers 
are added, as seen in Table 3. First, a Dense layer with a 
Rectified Linear Unit (ReLu) activation function is added. The 
Dense layer is a fully connected layer, which means that each 
neuron in a layer is connected to those in the following layer, 
and the parameters used here were 512 units (units are the 
output dimensions) and input dimension is the same as input 
shape.  ReLu is a simple calculation that relays back the 
value given as the input directly or returns 0.0 if the number 
is ≤ 0.0. To train deep neural networks like the one used here 
and to use stochastic gradient descent with backpropagation 
of errors, an activation function is needed which can behave 
as if it were a linear function but in reality is a nonlinear 
function pertaining to complex relations in the data from 
which the model learns weights. The function must also allow 
greater sensitivity to the activation sum input and avoids easy 
saturation. Hence, the answer to all these criteria is the Relu 
activation function (15). It acts linear for all values greater than 
0 but is actually a non-linear graph since it is flat for numbers 
≤ 0.0. This is why an activation function is used for the Dense 
layer. Then, a Dropout layer is added with a 0.3 dropout rate. 
The function of the Dropout layer is to, at each step during 
training, randomly set input units to 0 with a frequency of 
0.3. This is key to prevent overfitting and helps ensure better 
regularization. After this, another Dense layer followed 
by a Dropout layer is added, with the same parameters as 
specified before. The last layer added is a Dense layer with 
one unit to provide a one-dimensional output, along with the 
sigmoid activation function. The sigmoid activation function 
(also known as the logistic function) takes in the input and the 
function converts it into an output of a value in the range 0.0 to 
1.0 (16). Binary cross-entropy is used to calculate loss since 
this is a binary classification problem, where y is the label and 
p(y) is the predicted probability of it being that class:
 

 
 It computes a score of the average difference between 

Figure 4. Sample of data augmentation conducted on the images in 
the dataset. The augmentation techniques are described in Table 2. 
Random combinations of data augmentation techniques were used. 
The image above displays examples of images from the two classes 
- ‘male’ and ‘female’.  

Table 2. The different data augmentation techniques used for the 
training dataset with their corresponding numerical factor. This is a 
part of our data pre-processing and is especially useful for small 
datasets like ours.  

Type Factor

Rescale 1/255

Zoom Range 0.3

Rotation Range 50

Width Shift Range 0.2

Height Shift Range 0.2

Shear Range 0.2

Horizontal Flip True

Fill Mode Nearest
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the true and predicted probability distributions for predicting 
class 1 (17). Optimizers are algorithms which are implemented 
to vary the attributes of your neural network so as to obtain 
the minimum loss. They guide how a machine learning model 
learns and allows fast computation. They also prevent the 
model from believing that a local minimum has optimum 
weights because even though the loss function is a minimum 
at that local point, the optimum is only reached at the global 
minimum. This algorithm allows the model to find the globally 
optimum weights, serving its function as an optimizer. The 
RMSprop optimizer specifically does this by maintaining a 
moving average of square gradients and dividing the gradient 
by the root of this average, working on plain momentum, not 
Nesterov momentum. The effectiveness of this optimizer is 
why it is used for this task, and a learning rate hyperparameter 
of 1e-5 is also chosen. The learning rate was chosen such 
that the model does not get “stuck” at any local minima, and 
it also ensures that the model does not make any sudden, 
large updates to the weights such that it is unfavourable and 
harmful for the model (6). 
 Experiments were conducted on Google Colaboratory, 
with a 12GB NVIDIA Tesla K80 GPU. The model training is 
set with a batch size of 30 examples, 100 steps per epoch for 

100 epochs and the Keras RMSProp optimizer. The validation 
steps were 50 steps. After 100 epochs, the training accuracy 
and validation accuracy are measured (Table 1).
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